992 resultados para THERMAL DIFFUSION
Resumo:
We study front propagation in stirred media using a simplified modelization of the turbulent flow. Computer simulations reveal the existence of the two limiting propagation modes observed in recent experiments with liquid phase isothermal reactions. These two modes respectively correspond to a wrinkled although sharp propagating interface and to a broadened one. Specific laws relative to the enhancement of the front velocity in each regime are confirmed by our simulations.
Resumo:
Under field conditions, thermal diffusivity can be estimated from soil temperature data but also from the properties of soil components together with their spatial organization. We aimed to determine soil thermal diffusivity from half-hourly temperature measurements in a Rhodic Kanhapludalf, using three calculation procedures (the amplitude ratio, phase lag and Seemann procedures), as well as from soil component properties, for a comparison of procedures and methods. To determine thermal conductivity for short wave periods (one day), the phase lag method was more reliable than the amplitude ratio or the Seemann method, especially in deeper layers, where temperature variations are small. The phase lag method resulted in coherent values of thermal diffusivity. The method using properties of single soil components with the values of thermal conductivity for sandstone and kaolinite resulted in thermal diffusivity values of the same order. In the observed water content range (0.26-0.34 m³ m-3), the average thermal diffusivity was 0.034 m² d-1 in the top layer (0.05-0.15 m) and 0.027 m² d-1 in the subsurface layer (0.15-0.30 m).
Resumo:
We derive nonlinear diffusion equations and equations containing corrections due to fluctuations for a coarse-grained concentration field. To deal with diffusion coefficients with an explicit dependence on the concentration values, we generalize the Van Kampen method of expansion of the master equation to field variables. We apply these results to the derivation of equations of phase-separation dynamics and interfacial growth instabilities.
Resumo:
The diffusion of passive scalars convected by turbulent flows is addressed here. A practical procedure to obtain stochastic velocity fields with well¿defined energy spectrum functions is also presented. Analytical results are derived, based on the use of stochastic differential equations, where the basic hypothesis involved refers to a rapidly decaying turbulence. These predictions are favorable compared with direct computer simulations of stochastic differential equations containing multiplicative space¿time correlated noise.
Resumo:
An instrument designed to measure thermal conductivity of consolidated rocks, dry or saturated, using a transient method is presented. The instrument measures relative values of the thermal conductivity, and it needs calibration to obtain absolute values. The device can be used as heat pulse line source and as continuous heat line source. Two parameters to determine thermal conductivity are proposed: TMAX, in heat pulse line source, and SLOPE, in continuous heat line source. Its performance is better, and the operation simpler, in heat pulse line-source mode with a measuring time of 170 s and a reproducibility better than 2.5%. The sample preparation is very simple on both modes. The performance has been tested with a set of ten rocks with thermal conductivity values between 1.4 and 5.2 W m¿1 K¿1 which covers the usual range for consolidated rocks.
Resumo:
Aim: Diffusion weighted magnetic resonance imaging (MRI) is now widely used in human brain diagnosis.1 To date molecular mechanisms underlying changes in Apparent Diffusion Coefficient (ADC) signals remain poorly understood. AQP4, localized to astrocytes, is one of the most highly expressed cerebral AQPs.2 AQP4 is involved in water movement within the cell membrane of cultured astrocytes.3 We hypothesize that AQP4 contributes to water diffusion and underlying ADC values in normal brain. Methods: We used an RNA interference (RNAi) protocol in vivo, to acutely knockdown expression of AQP4 in rat brain and to determine whether this was associated with changes in brain ADC values using MRI protocols as previously described.4 RNAi was performed using specific small interference RNA (siRNA) against AQP4 (siAQP4) and a non-targeted-siRNA (siGLO) as a control. The specificity and efficiency of the siAQP4 were first tested in vitro in astrocyte and hippocampal slice cultures. In vivo, siRNAs were injected into the rat cortex 3d prior to MRI acquisition and AQP4 was assessed by western blot (n=4) and immunohistochemistry (n=6). Histology was performed on adjacent slices. Results: siAQP4 application on primary astrocyte cultures induced a 76% decrease in AQP4 expression after 4 days. In hippocampal slice cultures; we also found a significant decrease in AQP4 expression in astrocytes after siAQP4. In vivo, injection of non-targeted siRNA (siGLO) tagged with CY3 allowed us to show that GFAP positive cells (astrocytes) were positively stained with CY3-siGLO, showing efficient transfection. Western blot and immunohistochemical analysis showed that siAQP4 induced a ~30% decrease in AQP4 expression without modification of tissue properties or cell death. After siAQP4 treatment, a significant decrease in ADC values (~50%) were observed without altered of T2 values. Conclusions: Together these results suggest that AQP4 reduces water diffusion through the astrocytic plasma membrane and decreases ADC values. Our findings demonstrate for the first time that astrocytic AQP4 contributes significantly to brain water diffusion and ADC values in normal brain. These results open new avenues to interpretation of ADC values under normal physiological conditions and in acute and chronic brain injuries.
Resumo:
To evaluate primary care physicians' attitude towards implementation of rotavirus (RV) immunisation into the Swiss immunisation schedule, an eight-question internet-based questionnaire was sent to the 3799 subscribers of InfoVac, a nationwide web-based expert network on immunisation issues, which reaches >95% of paediatricians and smaller proportions of other primary care physicians. Five demographic variables were also inquired. Descriptive statistics and multivariate analyses for the main outcome "acceptance of routine RV immunisation" and other variables were performed. Diffusion of innovation theory was used for data assessment. Nine-hundred seventy-seven questionnaires were returned (26%). Fifty percent of participants were paediatricians. Routine RV immunisation was supported by 146 participants (15%; so called early adopters), dismissed by 620 (64%), leaving 211 (21%) undecided. However, when asked whether they would recommend RV vaccination to parents if it were officially recommended by the federal authorities and reimbursed, 467 (48.5%; so called early majority) agreed to recommend RV immunisation. Multivariate analysis revealed that physicians who would immunise their own child (OR: 5.1; 95% CI: 4.1-6.3), hospital-based physicians (OR: 1.6; 95% CI: 1.1-2.3) and physicians from the French (OR: 1.6; 95% CI: 1.2-2.3) and Italian speaking areas of Switzerland (OR: 2.5; 95% CI: 1.1-5.8) were more likely to support RV immunisation. Diffusion of innovation theory predicts a >80% implementation if approximately 50% of a given population support an innovation. Introduction of RV immunisation in Switzerland is likely to be successful, if (i) the federal authorities issue an official recommendation and (ii) costs are covered by basic health care insurance.
Resumo:
Microstructure imaging from diffusion magnetic resonance (MR) data represents an invaluable tool to study non-invasively the morphology of tissues and to provide a biological insight into their microstructural organization. In recent years, a variety of biophysical models have been proposed to associate particular patterns observed in the measured signal with specific microstructural properties of the neuronal tissue, such as axon diameter and fiber density. Despite very appealing results showing that the estimated microstructure indices agree very well with histological examinations, existing techniques require computationally very expensive non-linear procedures to fit the models to the data which, in practice, demand the use of powerful computer clusters for large-scale applications. In this work, we present a general framework for Accelerated Microstructure Imaging via Convex Optimization (AMICO) and show how to re-formulate this class of techniques as convenient linear systems which, then, can be efficiently solved using very fast algorithms. We demonstrate this linearization of the fitting problem for two specific models, i.e. ActiveAx and NODDI, providing a very attractive alternative for parameter estimation in those techniques; however, the AMICO framework is general and flexible enough to work also for the wider space of microstructure imaging methods. Results demonstrate that AMICO represents an effective means to accelerate the fit of existing techniques drastically (up to four orders of magnitude faster) while preserving accuracy and precision in the estimated model parameters (correlation above 0.9). We believe that the availability of such ultrafast algorithms will help to accelerate the spread of microstructure imaging to larger cohorts of patients and to study a wider spectrum of neurological disorders.
Resumo:
The objective of this study was to investigate whether it is possible to pool together diffusion spectrum imaging data from four different scanners, located at three different sites. Two of the scanners had identical configuration whereas two did not. To measure the variability, we extracted three scalar maps (ADC, FA and GFA) from the DSI and utilized a region and a tract-based analysis. Additionally, a phantom study was performed to rule out some potential factors arising from the scanner performance in case some systematic bias occurred in the subject study. This work was split into three experiments: intra-scanner reproducibility, reproducibility with twin-scanner settings and reproducibility with other configurations. Overall for the intra-scanner and twin-scanner experiments, the region-based analysis coefficient of variation (CV) was in a range of 1%-4.2% and below 3% for almost every bundle for the tract-based analysis. The uncinate fasciculus showed the worst reproducibility, especially for FA and GFA values (CV 3.7-6%). For the GFA and FA maps, an ICC value of 0.7 and above is observed in almost all the regions/tracts. Looking at the last experiment, it was found that there is a very high similarity of the outcomes from the two scanners with identical setting. However, this was not the case for the two other imagers. Given the fact that the overall variation in our study is low for the imagers with identical settings, our findings support the feasibility of cross-site pooling of DSI data from identical scanners.
Resumo:
The metastable defects of a-Si:H samples annealed at temperatures in the 300-550°C range have been studied by photothermal deflection spectroscopy (PDS). The light-soaked samples show an increase in optical absorption in the 0.8 to 1.5 eV range. The metastable defect density decreases when the annealing temperature increases, while the defect density increases. This decrease in the metastable defect density shows an almost linear correlation with the decrease in the hydrogen content of the samples, determined by IR transmission spectroscopy and thermal desorption spectroscopy.
Resumo:
RESUME BUT Cette étude a été menée sur le suivi de patients traités pour un glioblastome nouvellement diagnostiqué. Son objectif a été de déterminer l'impact des séquences de perfusion et de diffusion en imagerie par résonance magnétique (IRM). Un intérêt particulier a été porté au potentiel de ces nouvelles techniques d'imagerie dans l'anticipation de la progression de la maladie. En effet, l'intervalle de temps libre de progression est une mesure alternative de pronostic fréquemment utilisée. MATERIEL ET METHODE L'étude a porté sur 41 patients participant à un essai clinique de phase II de traitement par temozolomide. Leur suivi radiologique a comporté un examen IRM dans les 21 à 28 jours après radiochimiothérapie et tous les 2 mois par la suite. L'évaluation des images s'est faite sur la base de l'évaluation de l'effet de masse ainsi que de la mesure de la taille de la lésion sur les images suivantes : T1 avec produit de contraste, T2, diffusion, perfusion. Afin de déterminer la date de progression de la maladie, les critères classiques de variation de taille adjoints aux critères cliniques habituels ont été utilisés. RESULAT 311 examens IRM ont été revus. Au moment de la progression (32 patients), une régression multivariée selon Cox a permis de déterminer deux paramètres de survie : diamètre maximal en T1 (p>0.02) et variation de taille en T2 (p<0.05). L'impact de la perfusion et de la diffusion n'a pas été démontré de manière statistiquement significative. CONCLUSION Les techniques de perfusion et de diffusion ne peuvent pas être utilisées pour anticiper la progression tumorale. Alors que la prise de décision au niveau thérapeutique est critique au moment de la progression de la maladie, l'IRM classique en T1 et en T2 reste la méthode d'imagerie de choix. De manière plus spécifique, une prise de contraste en T1 supérieure à 3 cm dans son plus grand diamètre associée à un hypersignal T2 en augmentation forment un marqueur de mauvais pronostic.
Resumo:
A computer-aided method to improve the thickness uniformity attainable when coating multiple substrates inside a thermal evaporation physical vapor deposition unit is presented. The study is developed for the classical spherical (dome-shaped) calotte and also for a plane sector reversible holder setup. This second arrangement is very useful for coating both sides of the substrate, such as antireflection multilayers on lenses. The design of static correcting shutters for both kinds of configurations is also discussed. Some results of using the method are presented as an illustration.
Resumo:
We analyze the heat transfer between two nanoparticles separated by a distance lying in the near-field domain in which energy interchange is due to the Coulomb interactions. The thermal conductance is computed by assuming that the particles have charge distributions characterized by fluctuating multipole moments in equilibrium with heat baths at two different temperatures. This quantity follows from the fluctuation-dissipation theorem for the fluctuations of the multipolar moments. We compare the behavior of the conductance as a function of the distance between the particles with the result obtained by means of molecular dynamics simulations. The formalism proposed enables us to provide a comprehensive explanation of the marked growth of the conductance when decreasing the distance between the nanoparticles.
Resumo:
INTRODUCTION: Quantitative sensory testing (QST) is widely used in human research to investigate the integrity of the sensory function in patients with pain of neuropathic origin, or other causes such as low back pain. Reliability of QST has been evaluated on both sides of the face, hands and feet as well as on the trunk (Th3-L3). In order to apply these tests on other body-parts such as the lower lumbar spine, it is important first to establish reliability on healthy individuals. The aim of this study was to investigate intra-rater reliability of thermal QST in healthy adults, on two sites within the L5 dermatome of the lumbar spine and lower extremity. METHODS: Test-retest reliability of thermal QST was determined at the L5-level of the lumbar spine and in the same dermatome on the lower extremity in 30 healthy persons under 40 years of age. Results were analyzed using descriptive statistics and intraclass correlation coefficient (ICC). Values were compared to normative data, using Z-transformation. RESULTS: Mean intraindividual differences were small for cold and warm detection thresholds but larger for pain thresholds. ICC values showed excellent reliability for warm detection and heat pain threshold, good-to-excellent reliability for cold pain threshold and fair-to-excellent reliability for cold detection threshold. ICC had large ranges of confidence interval (95%). CONCLUSION: In healthy adults, thermal QST on the lumbar spine and lower extremity demonstrated fair-to-excellent test-retest reliability.