990 resultados para THERMAL DEFORMATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Addition of boron in small quantities to various titanium alloys have shown significant improvement in mechanical behavior of materials. In the present study, electron back-scatter diffraction (EBSD) techniques have been applied to investigate the deformation microstructure evolution in boron modified two-phase titanium alloy Ti-6Al-4V. The alloy was hot compressed at 750 degrees C up to 50% height reduction at two different strain rates (10(-3) s(-1) and 1 s(-1)). The EBSD analyses indicated significant differences in deformed microstructure of the base alloy and the alloy containing boron. A strong subgrain formation tendency was observed along with inhomogeneous distribution of dislocations inside large a colonies of Ti64. In contrast, a colonies were relatively strain free for Ti64 + B, with more uniform dislocation density distribution. The observed difference is attributed to microstructural modifications viz, grain size refinement and presence of TiB particles at grain boundary produced due to boron addition. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal expansion of several compositions of Sr and Mg-doped LaGaO3 including an A-site deficient composition (La0.9Sr0.1)(0.98)(Ga0.8Mg0.2)O-2.821 were measured in the temperature range from 298 to 1273 K. The effect of doping on thermal expansion was studied by varying the composition at one site of the perovskite structure (either A or B), while keeping the composition at the other site invariant. Thermal expansion varied nonlinearly with temperature and exhibited an inflexion between 550 and 620 K, probably related to the change in crystal structure from orthorhombic to rhombohedral. The dependence of average thermal expansion coefficient (alpha (av)) on the dopant concentration on either A or B site of the perovskite structure was found to be linear, when the composition at the other site was kept constant. Mg doping on the B-site had a greater effect on the average thermal expansion coefficient than Sr doping on the A-site. Cation deficiency at the A-site decreases thermal expansion when compositions at both sites are held constant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we examine the unusual plastic deformation under uniaxial compression of an Al2O3-15 mol % Y2O3 (A15Y) glass synthesized by a wet chemical route At a low temperature of 650-725 degrees C, plastic deformation of this glass is largely non-viscous through shear instabilities In contrast deformation near the crystallization temperature (850 degrees C) occurs homogeneously with work hardening and with a monotonic increase in the true density of the glass by 10-12% accompanied by an increase in hardness (H) and elastic modulus (E) of up to 100% We hypothesize a phenomenon of molecular densification of the amorphous structure through a hierarchy of multiple phases, analogous to density- or entropy-driven amorphous to-amorphous phase transitions (polyamorphism) These results suggest that the present method of preparation and the unusual behavior can trigger a search for many more systems that display such behavior (C) 2010 Acta Materialia Inc Published by Elsevier Ltd All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conditions for the preparation of stoichiometric barium zirconyl oxalate heptahydrate (BZO) have been standardized. The thermal decomposition of BZO has been investigated employing TG, DTG and DTA techniques and chemical and gas analysis. The decomposition proceeds through four steps and is not affected much by the surrounding gas atmosphere. Both dehydration and oxalate decomposition take place in two steps. The formation of a transient intermediate containing both oxalate and carbonate groups is inferred. The decomposition of oxalate groups results in a carbonate of composition Ba2Zr2OsCO3, which decomposes between 600 and 800 ~ and yields barium zirconate. Chemical analysis, IR spectra and X-ray powder diffraction data support the identity of the intermediate as a separate entity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conditions for the preparation of stoichiometric barium zirconyl oxalate heptahydrate (BZO) have been standardized. The thermal decomposition of BZO has been investigated employing TG, DTG and DTA techniques and chemical and gas analysis. The decomposition proceeds through four steps and is not affected much by the surrounding gas atmosphere. Both dehydration and oxalate decomposition take place in two steps. The formation of a transient intermediate containing both oxalate and carbonate groups is inferred. The decomposition of oxalate groups results in a carbonate of composition Ba2Zr2O5CO3, which decomposes between 600 and 800° and yields barium zirconate. Chemical analysis, IR spectra and X-ray powder diffraction data support the identity of the intermediate as a separate entity.Die Bedingungen für die Herstellung von stöchiometrischem Barium-zirconyl-oxalat Heptahydrat (BZO) wurden standardisiert. Die thermische Zersetzung von BZO wurde unter Einsatz der TG-, DTG- und DTA, sowie der chemischen und Gasanalyse untersucht. Die Zersetzung verläuft über vier Stufen und wird von der umgebenden Gasathmosphäre nicht besonders beeinflusst. Sowohl die Dehydratisierung als auch die Oxalatzersetzung erfolgt in zwei Stufen. Die Bildung einer intermediären Übergangsverbindung mit sowohl Oxalat- als auch Carbonatgruppen wirken hierbei mit. Die Zersetzung der Oxalatgruppen ergibt ein Carbonat der Zusammensetzung Ba2Zr2O5CO3, das zwischen 600 und 800° zersetzt wird und Bariumzirconat ergibt. Die Angaben der chemischen Analyse, der IR-Spekren und der Röntgen-Pulver-Diffraktion unterstützen die Identität der Intermediärverbindung als eine separate Einheit.On a standardisé les conditions de préparation de l'oxalate heptahydraté de zirconyle et de baryum (BZO) stoechiométrique. On a étudié la décomposition thermique de BZO par TG, TGD et ATD ainsi que par analyses chimiques et analyses des gaz. La décomposition a lieu en quatre étapes et n'est pas trop influencée par l'atmosphère ambiante. La déshydratation et la décomposition de l'oxalate ont lieu en deux étapes. Il se forme un composé intermédiaire de transition contenant à la fois les groupes oxalate et carbonate. La décomposition des groupes oxalate fournit un carbonate de composition Ba2Zr2O5CO3 qui se décompose entre 600 et 800° pour fournir du zirconate de baryum. L'analyse chimique, les spectres IR et la diffraction des rayons X sur poudre, apportent les preuves de l'existence d'un composé intermédiaire comme entité séparée.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal decomposition of ethylene diamine diperchlorate (EDDP) has been studied by differential-thermal analysis (DTA), thermogravimetric analysis (TGA), isothermal weight-loss measurements and mass-spectrometric analysis of the decomposition products. It has been observed that EDDP decomposes in two temperature regions. The low-temperature decomposition stops at about 35 to 40 percent weight loss below 250°C. The reason for the low-temperature cessation may be the adsorption of excess ethylene diamine on the crystal surface of EDDP. An overall activation energy of 54 kcal per mole has been calculated for the thermal decomposition of EDDP. Mass-spectrometric analysis shows that the decomposition products are mainly CO2, H2O, HCl and N2. The following stoichiometry has been proposed for the thermal decomposition of EDDP: (−CH2NH3CIO4)2→2CO2O+2HCl+N2

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fully automated, versatile Temperature Programmed Desorption (TDP), Temperature Programmed Reaction (TPR) and Evolved Gas Analysis (EGA) system has been designed and fabricated. The system consists of a micro-reactor which can be evacuated to 10−6 torr and can be heated from 30 to 750°C at a rate of 5 to 30°C per minute. The gas evolved from the reactor is analysed by a quadrupole mass spectrometer (1–300 amu). Data on each of the mass scans and the temperature at a given time are acquired by a PC/AT system to generate thermograms. The functioning of the system is exemplified by the temperature programmed desorption (TPD) of oxygen from YBa2Cu3−xCoxO7 ± δ, catalytic ammonia oxidation to NO over YBa2Cu3O7−δ and anaerobic oxidation of methanol to CO2, CO and H2O over YBa2Cu3O7−δ (Y123) and PrBa2Cu3O7−δ (Pr123) systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hot deformation behavior of α brass with varying zinc contents in the range 3%–30% was characterized using hot compression testing in the temperature range 600–900 °C and strain rate range 0.001–100 s−1. On the basis of the flow stress data, processing maps showing the variation of the efficiency of power dissipation (given by Image where m is the strain rate sensitivity) with temperature and strain rate were obtained. α brass exhibits a domain of dynamic recrystallization (DRX) at temperatures greater than 0.85Tm and at strain rates lower than 1 s−1. The maximum efficiency of power dissipation increases with increasing zinc content and is in the range 33%–53%. The DRX domain shifts to lower strain rates for higher zinc contents and the strain rate for peak efficiency is in the range 0.0001–0.05 s−1. The results indicate that the DRX in α brass is controlled by the rate of interface formation (nucleation) which depends on the diffusion-controlled process of thermal recovery by climb.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The compression test flow stress data of Al-4Mg alloy at different temperatures and strain rates are analysed using a dynamic materials model which considers the workpiece material as a dissipator of power causing microstructural changes. A processing map representing the efficiency of power dissipation as a function of temperature and strain rate has been established and optimum processing conditions for the alloy are determined. The features of the map correlate well with the microstructure and mechanical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diglycidyl ether–bisphenol-A-based epoxies toughened with various levels (0–12%) of chemically reacted liquid rubber, hydroxyl-terminated poly(butadiene-co-acrylonitrile) (HTBN) were studied for some of the mechanical and thermal properties. Although the ultimate tensile strength showed a continuous decrease with increasing rubber content, the toughness as measured by the area under the stress-vs.-strain curve and flexural strength reach a maximum around an optimum rubber concentration of 3% before decreasing. Tensile modulus was found to increase for concentrations below 6%. The glass transition temperature Tg as measured by DTA showed no variation for the toughened formulations. The TGA showed no variations in the pattern of decomposition. The weight losses for the toughened epoxies at elevated temperatures compare well with that of the neat epoxy. Scanning electron microscopy revealed the presence of a dual phase morphology with the spherical rubber particles precipitating out in the cured resin with diameter varying between 0.33 and 6.3 μm. In contrast, a physically blended rubber–epoxy showed much less effect towards toughening with the precipitated rubber particles of much bigger diameter (0.6–21.3 μm).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal activation of gamma,delta-unsaturated ketones (1, 9 and 12) in the presence of a catalytic amount of propionic acid causes a rearrangement to give new gamma,delta-unsaturated ketones (2, 10 and 14) via an intramolecular ene reaction followed by a retro-ene reaction.