876 resultados para TBA training content and design, Authoritative knowledge, Birthing practices
Resumo:
Although low- and middle-income countries still bear the burden of major infectious diseases, chronic noncommunicable diseases are becoming increasingly common due to rapid demographic, epidemiologic, and nutritional transitions. However, information is generally scant in these countries regarding chronic disease incidence, social determinants, and risk factors. The Brazilian Longitudinal Study of Adult Health (ELSA-Brasil) aims to contribute relevant information with respect to the development and progression of clinical and subclinical chronic diseases, particularly cardiovascular diseases and diabetes. In this report, the authors delineate the study's objectives, principal methodological features, and timeline. At baseline, ELSA-Brasil enrolled 15,105 civil servants from 5 universities and 1 research institute. The baseline examination (2008-2010) included detailed interviews, clinical and anthropometric examinations, an oral glucose tolerance test, overnight urine collection, a 12-lead resting electrocardiogram, measurement of carotid intima-media thickness, echocardiography, measurement of pulse wave velocity, hepatic ultrasonography, retinal fundus photography, and an analysis of heart rate variability. Long-term biologic sample storage will allow investigation of biomarkers that may predict cardiovascular diseases and diabetes. Annual telephone surveillance, initiated in 2009, will continue for the duration of the study. A follow-up examination is scheduled for 2012-2013.
Resumo:
A comparative study of the primary properties of six cocoa butter samples, representative of industrial blends and cocoa butter extracted from fruits cultivated in different geographical areas in Brazil is presented. The samples were evaluated according to fatty acid composition, triacylglycerol composition, regiospecific distribution, melting point, solid fat content and consistency. The results allowed for differentiating the samples according to their chemical compositions, thermal resistance properties, hardness characteristics, as well as technological adequacies and potential use in regions with tropical climates.
Resumo:
The aim of this study was to investigate the effects of beta-alanine supplementation on exercise capacity and the muscle carnosine content in elderly subjects. Eighteen healthy elderly subjects (60-80 years, 10 female and 4 male) were randomly assigned to receive either beta-alanine (BA, n = 12) or placebo (PL, n = 6) for 12 weeks. The BA group received 3.2 g of beta-alanine per day (2 x 800 mg sustained-release Carnosyn (TM) tablets, given 2 times per day). The PL group received 2 x (2 x 800 mg) of a matched placebo. At baseline (PRE) and after 12 weeks (POST-12) of supplementation, assessments were made of the muscle carnosine content, anaerobic exercise capacity, muscle function, quality of life, physical activity and food intake. A significant increase in the muscle carnosine content of the gastrocnemius muscle was shown in the BA group (+85.4%) when compared with the PL group (+7.2%) (p = 0.004; ES: 1.21). The time-to-exhaustion in the constant-load submaximal test (i.e., TLIM) was significantly improved (p = 0.05; ES: 1.71) in the BA group (+36.5%) versus the PL group (+8.6%). Similarly, time-to-exhaustion in the incremental test was also significantly increased (p = 0.04; ES 1.03) following beta-alanine supplementation (+12.2%) when compared with placebo (+0.1%). Significant positive correlations were also shown between the relative change in the muscle carnosine content and the relative change in the time-to-exhaustion in the TLIM test (r = 0.62; p = 0.01) and in the incremental test (r = 0.48; p = 0.02). In summary, the current data indicate for the first time, that beta-alanine supplementation is effective in increasing the muscle carnosine content in healthy elderly subjects, with subsequent improvement in their exercise capacity.
Resumo:
We aimed to investigate the role of betaine supplementation on muscle phosphorylcreatine (PCr) content and strength performance in untrained subjects. Additionally, we compared the ergogenic and physiological responses to betaine versus creatine supplementation. Finally, we also tested the possible additive effects of creatine and betaine supplementation. This was a double-blind, randomized, placebo-controlled study. Subjects were assigned to receive betaine (BET; 2 g/day), creatine (CR; 20 g/day), betaine plus creatine (BET + CR; 2 + 20 g/day, respectively) or placebo (PL). At baseline and after 10 days of supplementation, we assessed muscle strength and power, muscle PCr content, and body composition. The CR and BET + CR groups presented greater increase in muscle PCr content than PL ( = 0.004 and = 0.006, respectively). PCr content was comparable between BET versus PL ( = 0.78) and CR versus BET + CR ( = 0.99). CR and BET + CR presented greater muscle power output than PL in the squat exercise following supplementation ( = 0.003 and = 0.041, respectively). Similarly, bench press average power was significantly greater for the CR-supplemented groups. CR and BET + CR groups also showed significant pre- to post-test increase in 1-RM squat and bench press (CR: = 0.027 and < 0.0001; BET + CR: = 0.03 and < 0.0001 for upper- and lower-body assessments, respectively) No significant differences for 1-RM strength and power were observed between BET versus PL and CR versus BET + CR. Body composition did not differ between the groups. In conclusion, we reported that betaine supplementation does not augment muscle PCr content. Furthermore, we showed that betaine supplementation combined or not with creatine supplementation does not affect strength and power performance in untrained subjects.
Resumo:
Background Current recommendations for antithrombotic therapy after drug-eluting stent (DES) implantation include prolonged dual antiplatelet therapy (DAPT) with aspirin and clopidogrel >= 12 months. However, the impact of such a regimen for all patients receiving any DES system remains unclear based on scientific evidence available to date. Also, several other shortcomings have been identified with prolonged DAPT, including bleeding complications, compliance, and cost. The second-generation Endeavor zotarolimus-eluting stent (E-ZES) has demonstrated efficacy and safety, despite short duration DAPT (3 months) in the majority of studies. Still, the safety and clinical impact of short-term DAPT with E-ZES in the real world is yet to be determined. Methods The OPTIMIZE trial is a large, prospective, multicenter, randomized (1: 1) non-inferiority clinical evaluation of short-term (3 months) vs long-term (12-months) DAPT in patients undergoing E-ZES implantation in daily clinical practice. Overall, 3,120 patients were enrolled at 33 clinical sites in Brazil. The primary composite endpoint is death (any cause), myocardial infarction, cerebral vascular accident, and major bleeding at 12-month clinical follow-up post-index procedure. Conclusions The OPTIMIZE clinical trial will determine the clinical implications of DAPT duration with the second generation E-ZES in real-world patients undergoing percutaneous coronary intervention. (Am Heart J 2012;164:810-816.e3.)
Resumo:
Ethyl carbamate is an impurity present in distilled beverages. Given the risk of it being a carcinogenic substance, Brazilian legislation has determined that its presence in distilled beverages, such as 'aguardente' and 'cachaca' (two types of sugarcane spirits), should be limited to a maximum of 150 mu g/L. Ordinary spirits usually contain variable amounts of ethyl carbamate, although in lower concentrations than the maximum determined by law. The finding that commercial spirits had a much lower concentration of this impurity (around 50 mu g/L) led the authors to research the reasons for the differences, and these are explored in this paper, with a focus on the speed of the distillation process and its influence on the spirit's composition. The team conducted research in a sugarcane distillery producing 'aguardente' using a simple pot still and measured the influence of fast and slow distillation on the presence of ethyl carbamate and non-alcohol components in the process. The results demonstrated that the speed of distillation was proportionally related to the concentration of ethyl carbamate and secondary components in the beverage's composition. Copyright (c) 2012 The Institute of Brewing & Distilling
Resumo:
The current research compared resting heart rate variability (VFC) before and after 10 weeks of strength training in groups that used and did not use a vibration platform. Seventeen healthy men were divided into conventional strength training (TF) or strength training using a vibration platform with a frequency of 30 Hz (TF+V30) training groups. One repetition maximum load (1-RM) on half squat exercise and VFC measurements were determined pre- and post-training program. Both groups had improved 1-RM load after the program (15.1% in TF group and 16.4% in TF+V30 group), although this increase was changed in the same extent for the two groups and there was no difference in 1-RM load between groups pre- and post-training program. No significant difference was observed in resting VFC measurements between groups pre and post-training program, however the magnitude of the effect size was moderated (ES = 0.50-0.80) for some variables (R-R interval, standard deviation of all R-R interval - SDNN, RMSSD, log-transformed of low frequency - InLF, and log-transformed of high frequency - InHF) in TF+V30 group. It was concluded that 10 weeks of strength training program with or without the vibration platform provided similar increase in 1-RM load in both groups, and although some evidences in this study indicate that vibration can increase vagal activity analyzed by ES, in neither groups the strength training was able to change VFC significantly.
Resumo:
The watermelon is traditionally cultivated horizontally on the ground. The cultivars of small fruits (1 to 3 kg), which reach better market prices, are also being grown in a greenhouse, where the plants are trained upward on vertical supports, with branches pruning and fruits thinning. These practices make possible an increase of the plant density, fruit quality and yield compared to the traditional growth system. The aim of this experiment was to evaluate the influence of three training heights (1.7, 2.2 and 2.7 m) and two planting densities (3.17 and 4.76 plants m-2) over the productive and qualitative characteristics of mini watermelon "Smile" cultivated in greenhouse. The pruning was done at 43, 55 and 66 days after transplanting (DAT), when the plant height reached 1.7, 2.2 and 2.7 m, respectively. The dry mass of branches, petioles, leaves and total were affected by the training height, where the highest values were obtained by the plants pruned at 2.2 and 2.7 m. Leaf area, specific leaf area and leaf area index were not affected by the height of the plants. The training height of 2.7 m raised the total yield, however, marketable yield, average fruit mass and all the quality characteristics did not differ significantly from those obtained by the training height of 2.2 m. Regarding to plant density, the best option was 4.76 plants m-2, due to the increasing of marketable yield in 37.4% without reducing the average weight of fruits.
Resumo:
Background/Aims: Early life experiences are homeostatic determinants for adult organisms. We evaluated the impact of prenatal immune activation during late gestation on the neuroimmune-endocrine function of adult offspring and its interaction with acute stress. Methods: Pregnant Swiss mice received saline or lipopolysaccharide (LPS) on gestational day 17. Adult male offspring were assigned to the control or restraint stress condition. We analyzed plasmatic corticosterone and catecholamine levels, the monoamine content in the hypothalamus, striatum and frontal cortex, and the sleep-wake cycle before and after acute restraint stress. Results and Conclusion: Offspring from LPS-treated dams had increased baseline norepinephrine levels and potentiated corticosterone secretion after the acute stressor, and no effect was observed on hypothalamic monoamine content or sleep behavior. The offspring of immune-activated dams exhibited impairments in stress-induced serotonergic and dopaminergic alterations in the striatum and frontal cortex. The data demonstrate a distinction between the plasmatic levels of corticosterone in response to acute stress and the hypothalamic monoamine content and sleep patterns. We provide new evidence regarding the influence of immune activation during late gestation on the neuroendocrine homeostasis of offspring.
Resumo:
[EN] A universal O2 sensor presumes that compensation for impaired O2 delivery is triggered by low O2 tension, but in humans, comparisons of compensatory responses to altered arterial O2 content (CaO2) or tension (PaO2) have not been reported. To directly compare cardiac output (QTOT) and leg blood flow (LBF) responses to a range of CaO2 and PaO2, seven healthy young men were studied during two-legged knee extension exercise with control hemoglobin concentration ([Hb] = 144.4 +/- 4 g/l) and at least 1 wk later after isovolemic hemodilution ([Hb] = 115 +/- 2 g/l). On each study day, subjects exercised twice at 30 W and on to voluntary exhaustion with an FIO2 of 0.21 or 0.11. The interventions resulted in two conditions with matched CaO2 but markedly different PaO2 (hypoxia and anemia) and two conditions with matched PaO2 and different CaO2 (hypoxia and anemia + hypoxia). PaO2 varied from 46 +/- 3 Torr in hypoxia to 95 +/- 3 Torr (range 37 to >100) in anemia (P < 0.001), yet LBF at exercise was nearly identical. However, as CaO2 dropped from 190 +/- 5 ml/l in control to 132 +/- 2 ml/l in anemia + hypoxia (P < 0.001), QTOT and LBF at 30 W rose to 12.8 +/- 0.8 and 7.2 +/- 0.3 l/min, respectively, values 23 and 47% above control (P < 0.01). Thus regulation of QTOT, LBF, and arterial O2 delivery to contracting intact human skeletal muscle is dependent for signaling primarily on CaO2, not PaO2. This finding suggests that factors related to CaO2 or [Hb] may play an important role in the regulation of blood flow during exercise in humans.
Resumo:
Recently in most of the industrial automation process an ever increasing degree of automation has been observed. This increasing is motivated by the higher requirement of systems with great performance in terms of quality of products/services generated, productivity, efficiency and low costs in the design, realization and maintenance. This trend in the growth of complex automation systems is rapidly spreading over automated manufacturing systems (AMS), where the integration of the mechanical and electronic technology, typical of the Mechatronics, is merging with other technologies such as Informatics and the communication networks. An AMS is a very complex system that can be thought constituted by a set of flexible working stations, one or more transportation systems. To understand how this machine are important in our society let considerate that every day most of us use bottles of water or soda, buy product in box like food or cigarets and so on. Another important consideration from its complexity derive from the fact that the the consortium of machine producers has estimated around 350 types of manufacturing machine. A large number of manufacturing machine industry are presented in Italy and notably packaging machine industry,in particular a great concentration of this kind of industry is located in Bologna area; for this reason the Bologna area is called “packaging valley”. Usually, the various parts of the AMS interact among them in a concurrent and asynchronous way, and coordinate the parts of the machine to obtain a desiderated overall behaviour is an hard task. Often, this is the case in large scale systems, organized in a modular and distributed manner. Even if the success of a modern AMS from a functional and behavioural point of view is still to attribute to the design choices operated in the definition of the mechanical structure and electrical electronic architecture, the system that governs the control of the plant is becoming crucial, because of the large number of duties associated to it. Apart from the activity inherent to the automation of themachine cycles, the supervisory system is called to perform other main functions such as: emulating the behaviour of traditional mechanical members thus allowing a drastic constructive simplification of the machine and a crucial functional flexibility; dynamically adapting the control strategies according to the different productive needs and to the different operational scenarios; obtaining a high quality of the final product through the verification of the correctness of the processing; addressing the operator devoted to themachine to promptly and carefully take the actions devoted to establish or restore the optimal operating conditions; managing in real time information on diagnostics, as a support of the maintenance operations of the machine. The kind of facilities that designers can directly find on themarket, in terms of software component libraries provides in fact an adequate support as regard the implementation of either top-level or bottom-level functionalities, typically pertaining to the domains of user-friendly HMIs, closed-loop regulation and motion control, fieldbus-based interconnection of remote smart devices. What is still lacking is a reference framework comprising a comprehensive set of highly reusable logic control components that, focussing on the cross-cutting functionalities characterizing the automation domain, may help the designers in the process of modelling and structuring their applications according to the specific needs. Historically, the design and verification process for complex automated industrial systems is performed in empirical way, without a clear distinction between functional and technological-implementation concepts and without a systematic method to organically deal with the complete system. Traditionally, in the field of analog and digital control design and verification through formal and simulation tools have been adopted since a long time ago, at least for multivariable and/or nonlinear controllers for complex time-driven dynamics as in the fields of vehicles, aircrafts, robots, electric drives and complex power electronics equipments. Moving to the field of logic control, typical for industrial manufacturing automation, the design and verification process is approached in a completely different way, usually very “unstructured”. No clear distinction between functions and implementations, between functional architectures and technological architectures and platforms is considered. Probably this difference is due to the different “dynamical framework”of logic control with respect to analog/digital control. As a matter of facts, in logic control discrete-events dynamics replace time-driven dynamics; hence most of the formal and mathematical tools of analog/digital control cannot be directly migrated to logic control to enlighten the distinction between functions and implementations. In addition, in the common view of application technicians, logic control design is strictly connected to the adopted implementation technology (relays in the past, software nowadays), leading again to a deep confusion among functional view and technological view. In Industrial automation software engineering, concepts as modularity, encapsulation, composability and reusability are strongly emphasized and profitably realized in the so-calledobject-oriented methodologies. Industrial automation is receiving lately this approach, as testified by some IEC standards IEC 611313, IEC 61499 which have been considered in commercial products only recently. On the other hand, in the scientific and technical literature many contributions have been already proposed to establish a suitable modelling framework for industrial automation. During last years it was possible to note a considerable growth in the exploitation of innovative concepts and technologies from ICT world in industrial automation systems. For what concerns the logic control design, Model Based Design (MBD) is being imported in industrial automation from software engineering field. Another key-point in industrial automated systems is the growth of requirements in terms of availability, reliability and safety for technological systems. In other words, the control system should not only deal with the nominal behaviour, but should also deal with other important duties, such as diagnosis and faults isolations, recovery and safety management. Indeed, together with high performance, in complex systems fault occurrences increase. This is a consequence of the fact that, as it typically occurs in reliable mechatronic systems, in complex systems such as AMS, together with reliable mechanical elements, an increasing number of electronic devices are also present, that are more vulnerable by their own nature. The diagnosis problem and the faults isolation in a generic dynamical system consists in the design of an elaboration unit that, appropriately processing the inputs and outputs of the dynamical system, is also capable of detecting incipient faults on the plant devices, reconfiguring the control system so as to guarantee satisfactory performance. The designer should be able to formally verify the product, certifying that, in its final implementation, it will perform itsrequired function guarantying the desired level of reliability and safety; the next step is that of preventing faults and eventually reconfiguring the control system so that faults are tolerated. On this topic an important improvement to formal verification of logic control, fault diagnosis and fault tolerant control results derive from Discrete Event Systems theory. The aimof this work is to define a design pattern and a control architecture to help the designer of control logic in industrial automated systems. The work starts with a brief discussion on main characteristics and description of industrial automated systems on Chapter 1. In Chapter 2 a survey on the state of the software engineering paradigm applied to industrial automation is discussed. Chapter 3 presentes a architecture for industrial automated systems based on the new concept of Generalized Actuator showing its benefits, while in Chapter 4 this architecture is refined using a novel entity, the Generalized Device in order to have a better reusability and modularity of the control logic. In Chapter 5 a new approach will be present based on Discrete Event Systems for the problemof software formal verification and an active fault tolerant control architecture using online diagnostic. Finally conclusive remarks and some ideas on new directions to explore are given. In Appendix A are briefly reported some concepts and results about Discrete Event Systems which should help the reader in understanding some crucial points in chapter 5; while in Appendix B an overview on the experimental testbed of the Laboratory of Automation of University of Bologna, is reported to validated the approach presented in chapter 3, chapter 4 and chapter 5. In Appendix C some components model used in chapter 5 for formal verification are reported.