903 resultados para Surface plasmon resonance


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose To compare and examine the storage stability of compounded bevacizumab in polycarbonate (PC) and polypropylene (PP) syringes over a 6-month period. PC syringes have been used in a recent clinical study and bevacizumab stability has not been reported for this type of syringe. Methods Repackaged bevacizumab was obtained from Moorfields Pharmaceuticals in polycarbonate (PC) and polypropylene (PP) syringes. Bevacizumab from the stored syringes was analysed at monthly time points for a 6-month period and compared with bevacizumab from a freshly opened vial at each time point. SDS-PAGE electrophoresis and size-exclusion chromatography (SEC) was used to observe aggregation and degradation. Dynamic light scattering (DLS) provided information about the hydrodynamic size and particle size distribution of bevacizumab in solution. VEGF binding and the active concentration of bevacizumab was determined by surface plasmon resonance (SPR) using Biacore. Results SDS-PAGE and SEC analysis did not show any changes in the presence of higher molecular species (HMWS) or degradation products in PC and PP syringes from T0 to T6 compared to bevacizumab sampled from a freshly opened vial. The hydrodynamic diameter of bevacizumab in the PC syringe after six months of storage was not significantly different to bevacizumab taken from a freshly opened vial. Using SPR, the VEGF binding activity of bevacizumab in the PC syringe was comparable with bevacizumab taken from a freshly opened vial. Conclusion No significant difference over a 6-month period was observed in the quality of bevacizumab repackaged into prefilled PC polycarbonate and PP polypropylene syringes when compared to bevacizumab that is supplied from the vial.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infliximab is an antibody that neutralizes TNF-α and is used principally by systemic administration to treat many inflammatory disorders. We prepared the antibody mimetic Fab-PEG-Fab (FpFinfliximab) for direct intravitreal injection to assess whether such formulations have biological activity and potential utility for ocular use. FpFinfliximab was designed to address side effects caused by antibody degradation and the presence of the Fc region. Surface plasmon resonance analysis indicated that infliximab and FpFinfliximab maintained binding affinity for both human and murine recombinant TNF-α. No Fc mediated RPE cellular uptake was observed for FpFinfliximab. Both Infliximab and FpFinfliximab suppressed ocular inflammation by reducing the number of CD45+ infiltrate cells in the EAU mice model after a single intravitreal injection at the onset of peak disease. These results offer an opportunity to develop and formulate for ocular use, FpF molecules designed for single and potentially multiple targets using bi-specific FpFs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A well-organised reduced graphene oxide (RGO) and silver (Ag) wrapped TiO2 nano-hybrid was successfully achieved through a facile and easy route. The inherent characteristics of the synthesized RGO-Ag/TiO2 were revealed through crystalline phase, morphology, chemical composition, Raman scattering, UV-visible absorption, and photoluminescence analyses. The adopted synthesis route significantly controlled the uniform formation of silver nanoparticles and contributed for the absorption of light in the visible spectrum through localized surface plasmon resonance effects. The wrapped RGO nanosheets triggered the electron mobility and promoted visible light shift towards red spectrum. The accomplishment of synergised effect of RGO and Ag well degraded Bisphenol A under visible light irradiation with a removal efficiency of 61.9%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A diverse T cell receptor (TCR) repertoire is a prerequisite for effective viral clearance. However, knowledge of human TCR repertoire to defined viral antigens is limited. Recent advances in high-throughput sequencing (HTS) and single-cell sorting have revolutionized the study of human TCR repertoires to different types of viruses. In collaboration with the laboratory of Dr. Nan-ping Weng (National Institute on Aging, NIH), we applied unique molecular identifier (UMI)-labelled HTS, single-cell paired TCR analysis, surface plasmon resonance, and X-ray crystallography to exhaustively interrogate CD8+ TCR repertoires specific for cytomegalovirus (CMV) and influenza A (Flu) in HLA-A2+ humans. Our two CMV-specific TCR-pMHC structures and two Flu-specific TCR-pMHC structures provide a plausible explanation for the much higher diversity of CMV-specific than Flu-specific TCR repertoires in humans. Our comprehensive biochemical and structural portrait of two different anti-viral T cell responses may contribute to the future development of predictors of immunity or disease at the individual level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A major challenge in modern photonics and nano-optics is the diffraction limit of light which does not allow field localisation into regions with dimensions smaller than half the wavelength. Localisation of light into nanoscale regions (beyond its diffraction limit) has applications ranging from the design of optical sensors and measurement techniques with resolutions as high as a few nanometres, to the effective delivery of optical energy into targeted nanoscale regions such as quantum dots, nano-electronic and nano-optical devices. This field has become a major research direction over the last decade. The use of strongly localised surface plasmons in metallic nanostructures is one of the most promising approaches to overcome this problem. Therefore, the aim of this thesis is to investigate the linear and non-linear propagation of surface plasmons in metallic nanostructures. This thesis will focus on two main areas of plasmonic research –– plasmon nanofocusing and plasmon nanoguiding. Plasmon nanofocusing – The main aim of plasmon nanofocusing research is to focus plasmon energy into nanoscale regions using metallic nanostructures and at the same time achieve strong local field enhancement. Various structures for nanofocusing purposes have been proposed and analysed such as sharp metal wedges, tapered metal films on dielectric substrates, tapered metal rods, and dielectric V-grooves in metals. However, a number of important practical issues related to nanofocusing in these structures still remain unclear. Therefore, one of the main aims of this thesis is to address two of the most important of issues which are the coupling efficiency and heating effects of surface plasmons in metallic nanostructures. The method of analysis developed throughout this thesis is a general treatment that can be applied to a diversity of nanofocusing structures, with results shown here for the specific case of sharp metal wedges. Based on the geometrical optics approximation, it is demonstrated that the coupling efficiency from plasmons generated with a metal grating into the nanofocused symmetric or quasi-symmetric modes may vary between ~50% to ~100% depending on the structural parameters. Optimal conditions for nanofocusing with the view to minimise coupling and dissipative losses are also determined and discussed. It is shown that the temperature near the tip of a metal wedge heated by nanosecond plasmonic pulses can increase by several hundred degrees Celsius. This temperature increase is expected to lead to nonlinear effects, self-influence of the focused plasmon, and ultimately self-destruction of the metal tip. This thesis also investigates a different type of nanofocusing structure which consists of a tapered high-index dielectric layer resting on a metal surface. It is shown that the nanofocusing mechanism that occurs in this structure is somewhat different from other structures that have been considered thus far. For example, the surface plasmon experiences significant backreflection and mode transformation at a cut-off thickness. In addition, the reflected plasmon shows negative refraction properties that have not been observed in other nanofocusing structures considered to date. Plasmon nanoguiding – Guiding surface plasmons using metallic nanostructures is important for the development of highly integrated optical components and circuits which are expected to have a superior performance compared to their electronicbased counterparts. A number of different plasmonic waveguides have been considered over the last decade including the recently considered gap and trench plasmon waveguides. The gap and trench plasmon waveguides have proven to be difficult to fabricate. Therefore, this thesis will propose and analyse four different modified gap and trench plasmon waveguides that are expected to be easier to fabricate, and at the same time acquire improved propagation characteristics of the guided mode. In particular, it is demonstrated that the guided modes are significantly screened by the extended metal at the bottom of the structure. This is important for the design of highly integrated optics as it provides the opportunity to place two waveguides close together without significant cross-talk. This thesis also investigates the use of plasmonic nanowires to construct a Fabry-Pérot resonator/interferometer. It is shown that the resonance effect can be achieved with the appropriate resonator length and gap width. Typical quality factors of the Fabry- Pérot cavity are determined and explained in terms of radiative and dissipative losses. The possibility of using a nanowire resonator for the design of plasmonic filters with close to ~100% transmission is also demonstrated. It is expected that the results obtained in this thesis will play a vital role in the development of high resolution near field microscopy and spectroscopy, new measurement techniques and devices for single molecule detection, highly integrated optical devices, and nanobiotechnology devices for diagnostics of living cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optically tuned silver nanoparticles (AgNP's) functionalized with ω-mercaptoalkanoic acids are synthesized and used as a signal amplifier for the surface-enhanced resonance Raman scattering (SERRS) study of heme cofactor in methemoglobin (metHb). Even though both mercaptopropionic acid (MPA)- and mercaptononanoic acid (MNA)-functionalized AgNP's exemplify vastly enhanced SERRS signal of metHb, MNA-AgNP's amplify the SERRS signal amid preservation of the nativity of the heme pocket, unlike MPA-AgNP's. The electrostatic interaction between MNA-AgNP's and metHb leads to instant signal enhancement with a Raman enhancement factor (EF(SERS)) of 4.2 × 10(3). Additionally, a Langmuir adsorption isotherm has been employed for the adsorption of metHb on the MNA-AgNP surface, which provides the real surface coverage and equilibrium constant (K) of metHb as 139 nM and 3.6 × 10(8) M(-1), respectively. The lowest detection limit of 10 nM for metHb has been demonstrated using MNA-AgNP's besides retaining the nativity of the heme pocket.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silica coated Ag nanoparticles with defined surface plasmon resonances are used to selectively detect and analyze protein cofactors in solution and on interfaces via surface enhanced resonance Raman spectroscopy. The silica coating has a surprisingly small effect on optical amplification but minimizes unwanted interactions between the protein and the nanoparticle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper demonstrates a renewed procedure for the quantification of surface-enhanced Raman scattering (SERS) enhancement factors with improved precision. The principle of this method relies on deducting the resonance Raman scattering (RRS) contribution from surface-enhanced resonance Raman scattering (SERRS) to end up with the surface enhancement (SERS) effect alone. We employed 1,8,15,22-tetraaminophthalocyanato-cobalt(II) (4α-CoIITAPc), a resonance Raman- and electrochemically redox-active chromophore, as a probe molecule for RRS and SERRS experiments. The number of 4α-CoIITAPc molecules contributing to RRS and SERRS phenomena on plasmon inactive glassy carbon (GC) and plasmon active GC/Au surfaces, respectively, has been precisely estimated by cyclic voltammetry experiments. Furthermore, the SERS substrate enhancement factor (SSEF) quantified by our approach is compared with the traditionally employed methods. We also demonstrate that the present approach of SSEF quantification can be applied for any kind of different SERS substrates by choosing an appropriate laser line and probe molecule.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biocatalytic growth of gold nanoparticles (Au-NPs) has been employed in the design of new optical biosensors based on the enhanced resonance light scattering (RLS) signals. Both absorption spectroscopy and transmission electron microscopy (TEM) analysis revealed Au-NP seeds could be effectively enlarged upon the reaction with H2O2, an important metabolite that could be generated by many biocatalytic reactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An effective and facile method for fabrication of large area of aggregated gold nanorods (AuNRs) film was proposed by self-assembly of AuNRs at a toluene/water interface for the first time. It was found that large area of aggregated AuNRs film could be formed at the interface of toluene and water due to the interfacial tension between the two phases. The obtained large area of aggregated AuNRs film exhibits strong surface-enhanced Raman scattering (SERS) activity with 4-aminothiophenol (4-ATP) and 2-aminothiophenol (2-ATP) as the probe molecules based on the strong electromagnetic coupling effect between the very adjacent AuNRs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method to synthesize Fe3O4 core/Au shell submicrometer structures with very rough surfaces on the nanoscale is reported. The Fe3O4 particles were first modified with uniform polymers through the layer-by-layer technique and then adsorbed a lot of gold nanoseeds for further Au shell formation. The shell was composed of a large number of irregular nanoscale An particles arranged randomly, and there were well-defined boundaries between these Au nanoparticles. The Fe3O4 core/Au shell particles showed strong plasmon resonance absorption in the near-infrared range, and can be separated quickly from solution by an external magnet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We reported a simple method to synthesize gold nanoparticles (NPs) by photoreducing HAuCl4 in acetic acid solution in the presence of type I collagen. It was found that the collagen takes an important role in the formation of gold NPs. The introduction of collagen made the shape of the synthesized gold nanocrystals change from triangular and hexangular gold nanoplates to size-uniform NPs. On the other hand, thanks to the special characters of collagen molecules, such as its linear nanostructure, are positively charged when the pH < 7, and the excellent self-assembly ability, photoreduced gold NPs were assembled onto the collagen chains and formed gold NPs films and networks. A typical probe molecule, 4-aminothiophenol, was used to test the surface-enhanced Raman scattering activity of these gold NPs films and networks and the results indicated good Raman activity on these substrates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyaniline (PANI) was cathodically synthesized at an evaporated gold electrode using an in situ electrogenerated intermediate as oxidant during reduction of the dissolved oxygen. The obtained PANI layer showed an electrochemical response similar to that synthesized by the conventionally anodic polymerization, and the average rate for the growth of PANI layer at polycrystalline gold electrode was 1.59 nm h(-1), while that at the Au (111) electrode was 4.93 nm h(-1). Based on these results, the thickness of the resulted layer can be easily controlled at molecular level for potential nanodevice applications. The obtained PANI layer showed morphology from an island-like nanostructure to an ultrathin film, depending on the crystal orientation of the electrode used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thickness of the gold film and its morphology, including the surface roughness, are very important for getting a good, reproducible response in the SPR technique. Here, we report a novel alternative approach for preparing SPR-active substrates that is completely solution-based. Our strategy is based on self-assembly of the gold colloid monolayer on a (3-aminopropyl)trimethoxysilane-modified glass slide, followed by electroless gold plating. Using this method, the thickness of films can be easily controlled at the nanometer scale by setting the plating time in the same conditions. Surface roughness and morphology of gold films can be modified by both tuning the size of gold nanoparticles and agitation during the plating. Surface evolution of the Au film was followed in real time by UV-vis spectroscopy and in situ SPRS. To assess the surface roughness and electrochemical stability of the Au films, atomic force microscopy and cyclic voltammetry were used. In addition, the stability of the gold adhesion is demonstrated by three methods. The as-prepared Au films on substrates are reproducible and stable, which allows them to be used as electrodes for electrochemical experiments and as platforms for studying SAMs.