985 resultados para Supersymmetrie, ATLAS, LHC, GMSB
Resumo:
In questo lavoro di tesi è presentata la misura con il rivelatore ALICE del flusso triangolare, v3, di pioni, kaoni e protoni prodotti in collisioni PbPb a LHC. Il confronto di v3 con le previsioni di modelli idrodinamici permette di vincolare maggiormente le assunzioni sulle condizioni iniziali del sistema presenti nei diversi modelli ed estrarre una stima maggiormente precisa delle proprietà del mezzo come la viscosità. La misura è effettuata nella regione di pseudorapidità centrale sui dati raccolti da ALICE nel 2010 e 2011 e utilizza una tecnica di identificazione basata sia sulla misura della perdita di energia specifica, con la camera a proiezione temporale (TPC), sia la misura della velocità con il sistema a tempo di volo (TOF). La combinazione di entrambe le tecniche permette di separare le diverse specie in un intervallo esteso di impulsi con elevata efficienza e purezza. Per la misura del piano di reazione è stato utilizzato il rivelatore VZERO che misura la molteplicità delle particelle cariche in una regione di pseudorapidità disgiunta da quella in cui è misurato v3. La misura ottenuta è confrontata con le previsioni di modelli idrodinamici attualmente più utilizzati.
Resumo:
Questo progetto di tesi è lo sviluppo di un sistema distribuito di acquisizione e visualizzazione interattiva di dati. Tale sistema è utilizzato al CERN (Organizzazione Europea per la Ricerca Nucleare) al fine di raccogliere i dati relativi al funzionamento dell'LHC (Large Hadron Collider, infrastruttura ove avvengono la maggior parte degli esperimenti condotti al CERN) e renderli disponibili al pubblico in tempo reale tramite una dashboard web user-friendly. L'infrastruttura sviluppata è basata su di un prototipo progettato ed implementato al CERN nel 2013. Questo prototipo è nato perché, dato che negli ultimi anni il CERN è diventato sempre più popolare presso il grande pubblico, si è sentita la necessità di rendere disponibili in tempo reale, ad un numero sempre maggiore di utenti esterni allo staff tecnico-scientifico, i dati relativi agli esperimenti effettuati e all'andamento dell'LHC. Le problematiche da affrontare per realizzare ciò riguardano sia i produttori dei dati, ovvero i dispositivi dell'LHC, sia i consumatori degli stessi, ovvero i client che vogliono accedere ai dati. Da un lato, i dispositivi di cui vogliamo esporre i dati sono sistemi critici che non devono essere sovraccaricati di richieste, che risiedono in una rete protetta ad accesso limitato ed utilizzano protocolli di comunicazione e formati dati eterogenei. Dall'altro lato, è necessario che l'accesso ai dati da parte degli utenti possa avvenire tramite un'interfaccia web (o dashboard web) ricca, interattiva, ma contemporaneamente semplice e leggera, fruibile anche da dispositivi mobili. Il sistema da noi sviluppato apporta miglioramenti significativi rispetto alle soluzioni precedentemente proposte per affrontare i problemi suddetti. In particolare presenta un'interfaccia utente costituita da diversi widget configurabili, riuitilizzabili che permettono di esportare i dati sia presentati graficamente sia in formato "machine readable". Un'alta novità introdotta è l'architettura dell'infrastruttura da noi sviluppata. Essa, dato che è basata su Hazelcast, è un'infrastruttura distribuita modulare e scalabile orizzontalmente. È infatti possibile inserire o rimuovere agenti per interfacciarsi con i dispositivi dell'LHC e web server per interfacciarsi con gli utenti in modo del tutto trasparente al sistema. Oltre a queste nuove funzionalità e possbilità, il nostro sistema, come si può leggere nella trattazione, fornisce molteplici spunti per interessanti sviluppi futuri.
Resumo:
We propose a new and clinically oriented approach to perform atlas-based segmentation of brain tumor images. A mesh-free method is used to model tumor-induced soft tissue deformations in a healthy brain atlas image with subsequent registration of the modified atlas to a pathologic patient image. The atlas is seeded with a tumor position prior and tumor growth simulating the tumor mass effect is performed with the aim of improving the registration accuracy in case of patients with space-occupying lesions. We perform tests on 2D axial slices of five different patient data sets and show that the approach gives good results for the segmentation of white matter, grey matter, cerebrospinal fluid and the tumor.
Resumo:
We present an automatic method to segment brain tissues from volumetric MRI brain tumor images. The method is based on non-rigid registration of an average atlas in combination with a biomechanically justified tumor growth model to simulate soft-tissue deformations caused by the tumor mass-effect. The tumor growth model, which is formulated as a mesh-free Markov Random Field energy minimization problem, ensures correspondence between the atlas and the patient image, prior to the registration step. The method is non-parametric, simple and fast compared to other approaches while maintaining similar accuracy. It has been evaluated qualitatively and quantitatively with promising results on eight datasets comprising simulated images and real patient data.