979 resultados para Subwavelength plasmonic grating
Resumo:
Starch extraction from roots and tubers uses grating with water and sieves to separate the starch slurry from residual mass. The starch is recovered by decantation or centrifugation. The yam starch extraction is difficult due to high viscosity of the slurry caused by non-starch polysaccharides (NSP). The establishment of an efficient extraction process may turn yam into a competitive raw material. In this paper Dioscorea alata starch extracted by four methods was characterized in order to establish the impact of treatments. When the tubers were digested with an aqueous oxalic acid/ammonium oxalate (OA/AO) 1/1 solution, it was easier to separate the starch slurry from residual mass, because viscosity was reduced. For all the others methods tested, the viscosity remained almost the same. The nitrogen present in yam tubers was removed during the different extractions to a different extent. The largest nitrogen reduction was observed with ONAO followed by the control (water). The spectrum of starch granules sizes obtained also varied according to the treatment. Results proved that NSP carries small starch granules over to the waste water. The smaller starch granules diameter varied from 1.9 mu m (OA/AO extraction) to 13.5 mu m (water and pectinase extractions). The larger diameter varied from 41.0 mu m (NaOH treatment) to 67.7 mu m (ONAO). All starches extracted showed a RVA behavior in agreement with literature for yam starch, but with small differences due to the influence of methods. ONAO extraction showed the best recovery (18 g of starch/100 g tuber yam) and granular variation but it interfered with the rheological behavior of starch.
Resumo:
The existence of multiple active levels in a photorefractive Bi12TiO20 crystal is here investigated at 514.5nm wavelength. We carry out two-wave mixing experiments using symmetrically incident beams of equal intensities. A large amplitude fast phase modulation in one of the beams reduces the fringes visibility and improves the detection of the generated frequency modulated signals in both (R and S) output directions. Diffraction efficiencies of the phase (photorefractive) and the absorption (photochromic) gratings are quantitatively computed as functions of the grating period. Results show that the absorption grating has two distinct components: one associated to the photorefractive trap density modulation and another related to local light-induced effects between different levels. The photorefractive grating was also investigated at 633nm and 594nm (besides 514.5nm) and a significant quenching of the photorefractive effect was observed at these wavelengths.
Resumo:
Organic-inorganic hybrids containing methacrylic acid (McOH, CH(2)= C(CH(3))COOH)) modified zirconium tetrapropoxide, Zr(OPr(n))(4), classed as di-ureasil-zirconium oxo-cluster hybrids, have been prepared and structurally characterized by X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), Fourier transform infrared (FT-IR) and Raman (FT-Raman) spectroscopies, Si and C nuclear magnetic resonance (NMR), and atomic force microscopy (AFM). XRD and SAXS results have pointed out the presence of Si- and Zr-based nanobuilding blocks (NBBs) dispersed into the organic phase. Inter-NBBs correlation distances have been estimated for the pure di-ureasil and a model compound obtained. by hydrolysis/condensation of Zr(OPr(n))(4):McOH (molar ratio 1: 1): d(Si) approximate to 26 +/- 1 angstrom and d(Zr) approximate to 16 +/- 1 angstrom, respectively. In the case of the di-ureasil-zirconium oxo-cluster hybrids, these distances depend on the Zr relative molar percentage (rel. mol. Zr %) (d(Si) ranges from 18 to 25 angstrom and d(Zr) from 14 to 23 angstrom, as the rel. mol. Zr % increases from 5 to 75), suggesting that the Si- and Zr-based clusters are interconstrained. Complementary data from FT-IR, FT-Raman, (29)Si and (13)C NMR, and AFM support to a structural model where McOH-modified Zr-based NBBs (Zr-OMc) are present over the whole range of composition. At low Zr-OMc contents (rel. mol. Zr % <30) the clusters are well-dispersed within the di-ureasil host, whereas segregation occurs at the 0.1 mu m scale at high Zr-OMc concentration (rel. mol. Zr % = 50). No Zr-O-Si heterocondensation has been discerned. Monomode waveguides, diffractions gratings, and Fabry-Perot cavities have been written through the exposure of the hybrid monoliths to UV light. FT-Raman has shown that the chemical process that takes place under illumination is the polymerization of the methacrylate groups of the Zr-OMc NBBs. The guidance region in patterned channels is a Gaussian section located below the exposed surface with typical dimensions of 320 mu m wide and 88 mu m deep. The effective refractive index is 1.5162 (maximum index contrast on the order of 1 x 10(-4)) and the reflection coeficient of the Fabry-Perot cavity (formed by a grating patterned into a 0.278 cm channel) is 0.042 with a free spectral range value of 35.6 GHz.
Resumo:
A novel setup for imaging and interferometry through reflection holography with Bi12TiPO20(BTO) sillenite photorefractive crystals is proposed. A variation of the lensless Denisiuk arrangement was developed resulting in a compact, robust and simple interferometer. A red He-Ne laser was used as light source and the holographic recording occurred by diffusion with the grating vector parallel to the crystal [0 0 1]-axis. In order to enhance the holographic image quality and reduce noise a polarizing beam splitter (PBS) was positioned at the BTO input and the crystal was tilted around the [0 0 1]-axis. This enabled the orthogonally polarized transmission and diffracted beams to be separated by the PBS, providing the holographic image only. The possibility of performing deformation and strain analysis as well as vibration measurement of small objects was demonstrated. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
We present photoluminescence and decay of photo excited conductivity data for sol-gel SnO(2) thin films doped with rare earth ions Eu(3+) and Er(3+), a material with nanoscopic crystallites. Photoluminescence spectra are obtained under excitation with several monochromatic light sources, such as Kr(+) and Ar(+) lasers, Xe lamp plus a selective monochromator with UV grating, and the fourth harmonic of a Nd: YAG laser (4.65eV), which assures band-to-band transition and energy transfer to the ion located at matrix sites, substitutional to Sn(4+). The luminescence structure is rather different depending on the location of the rare-earth doping, at lattice symmetric sites or segregated at grain boundary layer, where it is placed in asymmetric sites. The decay of photo-excited conductivity also shows different trapping rate depending on the rare-earth concentration. For Er-doped films, above the saturation limit, the evaluated capture energy is higher than for films with concentration below the limit, in good agreement with the different behaviour obtained from luminescence data. For Eu-doped films, the difference between capture energy and grain boundary barrier is not so evident, even though the luminescence spectra are rather distinct.
Resumo:
The need for low-chirp and compact transmitters for high-bit-rate optical links has led to the development of integrated laser electroabsorption modulators (ILM). We have investigated feedback effects inducing frequency chirp by developing a model treating the ILM as a whole and obtained analytical expressions of the FM and AM responses. The variation of the frequency chirp with the residual facet reflectivity of the modulator section is calculated. The model predicts the unusual peak in the measured frequency responses and has been used to define design rules.
Resumo:
The energy conservation of grating diffraction is analyzed in a particular condition of incidence in which two incident waves reach a symmetrical grating from the two sides of the grating normal at the first-order Littrow mounting. In such a situation the incident waves generate an interference pattern with the same period as the grating. Thus in each direction of diffraction, interference occurs between two consecutive diffractive orders of the symmetrical incident waves. By applying only energy conservation and the geometrical symmetry of the grating profile to this problem it is possible to establish a general constraint for the phases and amplitudes of the diffracted orders of the same incident wave. Experimental and theoretical results are presented confirming the obtained relations. © 2006 Optical Society of America.
Resumo:
We report the use of organic-inorganic sol-gel derived poly(oxyehylene)/ siloxane hybrid doped with methacrylic acid modified zirconium (IV) n-propoxide for the fabrication of low cost waveguides trough direct UV laser writing. The organic-inorganic hybrids were processed as monoliths with size and shape control. The effective guiding region was identified and the number of modes was estimated via mode field analyses. A grating was successfully superimposed on the channel and the respective reflection spectrum was measured, enabling the determination of the guiding region dimension, the calculation of the effective refractive index of the guided mode. © 2007 IEEE.
Resumo:
In this work we studied the changes of the optical constants of films in the binary system Sb2O3-Sb2S3 induced by light in the VIS-UV. The measurements were performed before and after homogeneous irradiation of the films to a Hg lamp and in real time during the holographic exposure of the samples (at 458nm). Changes of the absorption coefficient (amplitude grating) and refractive index (phase grating) were measured simultaneously using the self-diffraction using the holographic setup. Besides the films presented a strong photodarkening effect under homogeneous irradiation, the samples holographically exposed presented only refractive index modulations. None amplitude modulation was measured in real time for spatial frequencies of about 1000 l/mm. © 2009 SPIE.
Resumo:
This work presents a method to obtain B-scan images based on linear array scanning and 2R-SAFT. Using this technique some advantages are obtained: the ultrasonic system is very simple; it avoids the grating lobes formation, characteristic in conventional SAFT; and subaperture size and focussing lens (to compensate emission-reception) can be adapted dynamically to every image point. The proposed method has been experimentally tested in the inspection of CFRP samples. © 2010 American Institute of Physics.
Resumo:
Photoluminescence and photo-excited conductivity data as well as structural analysis are presented for sol-gel SnO2 thin films doped with rare earth ions Eu3+ and Er3+, deposited by sol-gel-dip-coating technique. Photoluminescence spectra are obtained under excitation with various types of monochromatic light sources, such as Kr+, Ar+ and Nd:YAG lasers, besides a Xe lamp plus a selective monochromator with UV grating. The luminescence fine structure is rather different depending on the location of the rare-earth doping, at lattice symmetric sites or segregated at the asymmetric grain boundary layer sites. The decay of photo-excited conductivity also shows different trapping rate depending on the rare-earth concentration. For Er-doped films, above the saturation limit, the evaluated capture energy is higher than for films with concentration below the limit, in good agreement with the different behaviour obtained from luminescence data. For Eu-doped films, the difference in the capture energy is not so evident in these materials with nanoscocopic crystallites, even though the luminescence spectra are rather distinct. It seems that grain boundary scattering plays a major role in Eu-doped SnO2 films. Structural evaluation helps to interpret the electro-optical data. © 2010 IOP Publishing Ltd.
Resumo:
Plasmon-enhanced spectroscopic techniques have expanded single-molecule detection (SMD) and are revolutionizing areas such as bio-imaging and single-cell manipulation. Surface-enhanced (resonance) Raman scattering (SERS or SERRS) combines high sensitivity with molecularfingerprint information at the single-molecule level. Spectra originating from single-molecule SERS experiments are rare events, which occur only if a single molecule is located in a hot-spot zone. In this spot, the molecule is selectively exposed to a significant enhancement associated with a high, local electromagnetic field in the plasmonic substrate. Here, we report an SMD study with an electrostatic approach in which a Langmuir film of a phospholipid with anionic polar head groups (PO 4 -) was doped with cationic methylene blue (MB), creating a homogeneous, two-dimensional distribution of dyes in the monolayer. The number of dyes in the probed area of the Langmuir-Blodgett (LB) film coating the Ag nanostructures established a regime in which single-molecule events were observed, with the identification based on direct matching of the observed spectrum at each point of the mapping with a reference spectrum for the MB molecule. In addition, advanced fitting techniques were tested with the data obtained from micro-Raman mapping, thus achieving real-time processing to extract the MB single-molecule spectra. © 2013 Society for Applied Spectroscopy.
Resumo:
Several Lamb wave modes can be coupled to a particular structure, depending on its geometry and transducer used to generate the guided waves. Each Lamb mode interacts in a particular form with different types of defects, like notches, delamination, surface defects, resulting in different information which can be used to improve damage detection and characterization. An image compounding technique that uses the information obtained from different propagation modes of Lamb waves for non-destructive testing of plate-like structures is proposed. A linear array consisting of 16 piezoelectric elements is attached to a 1 mm thickness aluminum plate, coupling the fundamental A0 and S0 modes at the frequencies of 100 kHz and 360 kHz, respectively. For each mode two images are obtained from amplitude and phase information: one image using the Total Focusing Method (TFM) and one phase image obtained from the Sign Coherence Factor (SCF). Each TFM image is multiplied by the SCF image of the respective mode to improve contrast and reduce side and grating lobes effects. The high dispersive characteristic of the A0 mode is compensated for adequate defect detection. The information in the SCF images is used to select one of the TFM mode images, at each pixel, to obtain the compounded image. As a result, dead zone is reduced, resolution and contrast are improved, enhancing damage detection when compared to the use of only one mode. © 2013 Elsevier Ltd.
Resumo:
Relative to the Er3 +:gold-nanoparticle (Er3 +:Au-NP) axis, the polarization of the gold nanoparticle can be longitudinal (electric dipole parallel to the Er3 +:Au-NP axis) or transverse (electric dipole perpendicular to the Er3 +:Au-NP axis). For longitudinal polarization, the plasmon resonance modes of gold nanoparticles embedded in Er3 +-doped germanium-tellurite glass are activated using laser lines at 808 and 488 nm in resonance with radiative transitions of Er3 + ions. The gold nanoparticles were grown within the host glass by thermal annealing over various lengths of time, achieving diameters lower than 1.6 nm. The resonance wavelengths, determined theoretically and experimentally, are 770 and 800 nm. The absorption wavelength of nanoparticles was determined by using the Frohlich condition. Gold nanoparticles provide tunable emission resulting in a large enhancement for the 2H11/2 → 4I13/2 (emission at 805 nm) and 4S 3/2 → 4I13/2 (emission at 840 nm) electronic transitions of Er3 + ions; this is associated with the quantum yield of the energy transfer process. The excitation pathways, up-conversion and luminescence spectra of Er3 + ions are described through simplified energy level diagrams. We observed that up-conversion is favored by the excited-state absorption due to the presence of the gold nanoparticles coupled with the Er3 + ions within the glass matrix. © 2013 Elsevier B.V.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)