969 resultados para Stochastic Model
Resumo:
We analyze the dynamical behavior of a quantum system under the actions of two counteracting baths: the inevitable energy draining reservoir and, in opposition, exciting the system, an engineered Glauber's amplifier. We follow the system dynamics towards equilibrium to map its distinctive behavior arising from the interplay of attenuation and amplification. Such a mapping, with the corresponding parameter regimes, is achieved by calculating the evolution of both the excitation and the Glauber-Sudarshan P function. Techniques to compute the decoherence and the fidelity of quantum states under the action of both counteracting baths, based on the Wigner function rather than the density matrix, are also presented. They enable us to analyze the similarity of the evolved state vector of the system with respect to the original one, for all regimes of parameters. Applications of this attenuation-amplification interplay are discussed.
Resumo:
We present four estimators of the shared information (or interdepency) in ground states given that the coefficients appearing in the wave function are all real non-negative numbers and therefore can be interpreted as probabilities of configurations. Such ground states of Hermitian and non-Hermitian Hamiltonians can be given, for example, by superpositions of valence bond states which can describe equilibrium but also stationary states of stochastic models. We consider in detail the last case, the system being a classical not a quantum one. Using analytical and numerical methods we compare the values of the estimators in the directed polymer and the raise and peel models which have massive, conformal invariant and nonconformal invariant massless phases. We show that like in the case of the quantum problem, the estimators verify the area law with logarithmic corrections when phase transitions take place.
Resumo:
The efficacy of fluorescence spectroscopy to detect squamous cell carcinoma is evaluated in an animal model following laser excitation at 442 and 532 nm. Lesions are chemically induced with a topical DMBA application at the left lateral tongue of Golden Syrian hamsters. The animals are investigated every 2 weeks after the 4th week of induction until a total of 26 weeks. The right lateral tongue of each animal is considered as a control site (normal contralateral tissue) and the induced lesions are analyzed as a set of points covering the entire clinically detectable area. Based on fluorescence spectral differences, four indices are determined to discriminate normal and carcinoma tissues, based on intraspectral analysis. The spectral data are also analyzed using a multivariate data analysis and the results are compared with histology as the diagnostic gold standard. The best result achieved is for blue excitation using the KNN (K-nearest neighbor, a interspectral analysis) algorithm with a sensitivity of 95.7% and a specificity of 91.6%. These high indices indicate that fluorescence spectroscopy may constitute a fast noninvasive auxiliary tool for diagnostic of cancer within the oral cavity. (C) 2008 Society of Photo-Optical Instrumentation Engineers.
Resumo:
The existence of juxtaposed regions of distinct cultures in spite of the fact that people's beliefs have a tendency to become more similar to each other's as the individuals interact repeatedly is a puzzling phenomenon in the social sciences. Here we study an extreme version of the frequency-dependent bias model of social influence in which an individual adopts the opinion shared by the majority of the members of its extended neighborhood, which includes the individual itself. This is a variant of the majority-vote model in which the individual retains its opinion in case there is a tie among the neighbors' opinions. We assume that the individuals are fixed in the sites of a square lattice of linear size L and that they interact with their nearest neighbors only. Within a mean-field framework, we derive the equations of motion for the density of individuals adopting a particular opinion in the single-site and pair approximations. Although the single-site approximation predicts a single opinion domain that takes over the entire lattice, the pair approximation yields a qualitatively correct picture with the coexistence of different opinion domains and a strong dependence on the initial conditions. Extensive Monte Carlo simulations indicate the existence of a rich distribution of opinion domains or clusters, the number of which grows with L(2) whereas the size of the largest cluster grows with ln L(2). The analysis of the sizes of the opinion domains shows that they obey a power-law distribution for not too large sizes but that they are exponentially distributed in the limit of very large clusters. In addition, similarly to other well-known social influence model-Axelrod's model-we found that these opinion domains are unstable to the effect of a thermal-like noise.
Resumo:
Fontanari introduced [Phys. Rev. Lett. 91, 218101 (2003)] a model for studying Muller's ratchet phenomenon in growing asexual populations. They studied two situations, either including a death probability for each newborn or not, but were able to find analytical (recursive) expressions only in the no-decay case. In this Brief Report a branching process formalism is used to find recurrence equations that generalize the analytical results of the original paper besides confirming the interesting effects their simulations revealed.
Resumo:
We obtain the exact nonequilibrium work generating function (NEWGF) for a small system consisting of a massive Brownian particle connected to internal and external springs. The external work is provided to the system for a finite-time interval. The Jarzynski equality, obtained in this case directly from the NEWGF, is shown to be valid for the present model, in an exact way regardless of the rate of external work.
Resumo:
Context tree models have been introduced by Rissanen in [25] as a parsimonious generalization of Markov models. Since then, they have been widely used in applied probability and statistics. The present paper investigates non-asymptotic properties of two popular procedures of context tree estimation: Rissanen's algorithm Context and penalized maximum likelihood. First showing how they are related, we prove finite horizon bounds for the probability of over- and under-estimation. Concerning overestimation, no boundedness or loss-of-memory conditions are required: the proof relies on new deviation inequalities for empirical probabilities of independent interest. The under-estimation properties rely on classical hypotheses for processes of infinite memory. These results improve on and generalize the bounds obtained in Duarte et al. (2006) [12], Galves et al. (2008) [18], Galves and Leonardi (2008) [17], Leonardi (2010) [22], refining asymptotic results of Buhlmann and Wyner (1999) [4] and Csiszar and Talata (2006) [9]. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We consider binary infinite order stochastic chains perturbed by a random noise. This means that at each time step, the value assumed by the chain can be randomly and independently flipped with a small fixed probability. We show that the transition probabilities of the perturbed chain are uniformly close to the corresponding transition probabilities of the original chain. As a consequence, in the case of stochastic chains with unbounded but otherwise finite variable length memory, we show that it is possible to recover the context tree of the original chain, using a suitable version of the algorithm Context, provided that the noise is small enough.
Resumo:
A mechanism for the kinetic instabilities observed in the galvanostatic electro-oxidation of methanol is suggested and a model developed. The model is investigated using stoichiometric network analysis as well as concepts from algebraic geometry (polynomial rings and ideal theory) revealing the occurrence of a Hopf and a saddle-node bifurcation. These analytical solutions are confirmed by numerical integration of the system of differential equations. (C) 2010 American Institute of Physics
Resumo:
Currently there is a trend for the expansion of the area cropped with sugarcane (Saccharum officinarum L.), driven by an increase in the world demand for biofuels, due to economical, environmental, and geopolitical issues. Although sugarcane is traditionally harvested by burning dried leaves and tops, the unburned, mechanized harvest has been progressively adopted. The use of process based models is useful in understanding the effects of plant litter in soil C dynamics. The objective of this work was to use the CENTURY model in evaluating the effect of sugarcane residue management in the temporal dynamics of soil C. The approach taken in this work was to parameterize the CENTURY model for the sugarcane crop, to simulate the temporal dynamics of soil C, validating the model through field experiment data, and finally to make predictions in the long term regarding soil C. The main focus of this work was the comparison of soil C stocks between the burned and unburned litter management systems, but the effect of mineral fertilizer and organic residue applications were also evaluated. The simulations were performed with data from experiments with different durations, from 1 to 60 yr, in Goiana and Timbauba, Pernambuco, and Pradopolis, Sao Paulo, all in Brazil; and Mount Edgecombe, Kwazulu-Natal, South Africa. It was possible to simulate the temporal dynamics of soil C (R(2) = 0.89). The predictions made with the model revealed that there is, in the long term, a trend for higher soil C stocks with the unburned management. This increase is conditioned by factors such as climate, soil texture, time of adoption of the unburned system, and N fertilizer management.
Resumo:
The search for more realistic modeling of financial time series reveals several stylized facts of real markets. In this work we focus on the multifractal properties found in price and index signals. Although the usual minority game (MG) models do not exhibit multifractality, we study here one of its variants that does. We show that the nonsynchronous MG models in the nonergodic phase is multifractal and in this sense, together with other stylized facts, constitute a better modeling tool. Using the structure function (SF) approach we detected the stationary and the scaling range of the time series generated by the MG model and, from the linear (non-linear) behavior of the SF we identified the fractal (multifractal) regimes. Finally, using the wavelet transform modulus maxima (WTMM) technique we obtained its multifractal spectrum width for different dynamical regimes. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We study the dynamics of the adoption of new products by agents with continuous opinions and discrete actions (CODA). The model is such that the refusal in adopting a new idea or product is increasingly weighted by neighbor agents as evidence against the product. Under these rules, we study the distribution of adoption times and the final proportion of adopters in the population. We compare the cases where initial adopters are clustered to the case where they are randomly scattered around the social network and investigate small world effects on the final proportion of adopters. The model predicts a fat tailed distribution for late adopters which is verified by empirical data. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this work we study an agent based model to investigate the role of asymmetric information degrees for market evolution. This model is quite simple and may be treated analytically since the consumers evaluate the quality of a certain good taking into account only the quality of the last good purchased plus her perceptive capacity beta. As a consequence, the system evolves according to a stationary Markov chain. The value of a good offered by the firms increases along with quality according to an exponent alpha, which is a measure of the technology. It incorporates all the technological capacity of the production systems such as education, scientific development and techniques that change the productivity rates. The technological level plays an important role to explain how the asymmetry of information may affect the market evolution in this model. We observe that, for high technological levels, the market can detect adverse selection. The model allows us to compute the maximum asymmetric information degree before the market collapses. Below this critical point the market evolves during a limited period of time and then dies out completely. When beta is closer to 1 (symmetric information), the market becomes more profitable for high quality goods, although high and low quality markets coexist. The maximum asymmetric information level is a consequence of an ergodicity breakdown in the process of quality evaluation. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The Brazilian Atlantic Forest is one of the richest biodiversity hotspots of the world. Paleoclimatic models have predicted two large stability regions in its northern and central parts, whereas southern regions might have suffered strong instability during Pleistocene glaciations. Molecular phylogeographic and endemism studies show, nevertheless, contradictory results: although some results validate these predictions, other data suggest that paleoclimatic models fail to predict stable rainforest areas in the south. Most studies, however, have surveyed species with relatively high dispersal rates whereas taxa with lower dispersion capabilities should be better predictors of habitat stability. Here, we have used two land planarian species as model organisms to analyse the patterns and levels of nucleotide diversity on a locality within the Southern Atlantic Forest. We find that both species harbour high levels of genetic variability without exhibiting the molecular footprint of recent colonization or population expansions, suggesting a long-term stability scenario. The results reflect, therefore, that paleoclimatic models may fail to detect refugia in the Southern Atlantic Forest, and that model organisms with low dispersal capability can improve the resolution of these models.
Resumo:
In this paper, we study the effects of introducing contrarians in a model of Opinion Dynamics where the agents have internal continuous opinions, but exchange information only about a binary choice that is a function of their continuous opinion, the CODA model. We observe that the hung election scenario that arises when contrarians are introduced in discrete opinion models still happens. However, it is weaker and it should not be expected in every election. Finally, we also show that the introduction of contrarians make the tendency towards extremism of the original model weaker, indicating that the existence of agents that prefer to disagree might be an important aspect and help society to diminish extremist opinions.