921 resultados para Stereotype Threat
Resumo:
Although monocotyledonous-plant-infecting mastreviruses (in the family Geminiviridae) are known to cause economically significant crop losses in certain areas of the world, in Australia, they pose no obvious threat to agriculture. Consequently, only a few Australian monocot-infecting mastreviruses have been described, and only two have had their genomes fully sequenced. Here, we present the third full-genome sequence of an Australian monocot-infecting mastrevirus from Bromus catharticus belonging to a distinct species, which we have tentatively named Bromus catharticus striate mosaic virus (BCSMV). Although the genome of this new virus shares only 57.7% sequence similarity with that of its nearest known relative, Digitaria didactyla striate mosaic virus (DDSMV; also from Australia), it has features typical of all other known mastrevirus genomes. Phylogenetic analysis showed that both the full genome and each of its probable expressed proteins group with the two other characterised Australian monocot-infecting mastreviruses. Besides the BCSMV genome sequence revealing that Australian monocot-infecting mastrevirus diversity rivals that seen in Africa, it has enabled us, for the first, to time detect evidence of recombination amongst the Australian viruses. Specifically, it appears that DDSMV possesses a short intergenic region sequence that has been recombinationally derived from either BCSMV or a close relative that has not yet been identified.
Resumo:
Coastal seagrass habitats in tropical and subtropical regions support aggregations of resident green turtles (Chelonia mydas) from several genetically distinct breeding populations. Migration of individuals to their respective dispersed breeding sites provides a complex pattern of migratory connectivity among nesting and feeding habitats of this species. An understanding of this pattern is important in regions where the persistence of populations is under threat from anthropogenic impacts. The present study uses mitochondrial DNA and mixed-stock analyses to assess the connectivity among seven feeding grounds across the north Australian coast and adjacent areas and 17 genetically distinct breeding populations from the Indo-Pacific region. It was hypothesised that large and geographically proximate breeding populations would dominate at nearby feeding grounds. As expected, each sampled feeding area appears to support multiple breeding populations, with two aggregations dominated by a local breeding population. Geographic distance between breeding and feeding habitat strongly influenced whether a breeding population contributed to a feeding ground (wi = 0.654); however, neither distance nor size of a breeding population was a good predictor of the extent of their contribution. The differential proportional contributions suggest the impact of anthropogenic mortality at feeding grounds should be assessed on a case-by-case basis.
Resumo:
Sub-tropical and tropical plantations of Eucalyptus grandis hybrids in eastern Australia have been severely affected by anamorphs of Teratosphaeria (formerly Kirramyces) causing a serious leaf blight disease. Initially the causal organism in Queensland, Australia, was identified as Teratosphaeria eucalypti, a known leaf parasite of endemic Eucalyptus spp. However, some inconsistencies in symptoms, damage and host range suggested that the pathogen in Queensland may be a new species. Isolates of T. eucalypti from throughout its known endemic range, including Queensland and New Zealand, where it is an exotic pathogen, were compared using multiple gene phylogenies. Phylogenetic studies revealed that the species responsible for leaf blight in Queensland represents a new taxon, described here as Teratosphaeria pseudoeucalypti. While the DNA sequence of T. pseudoeucalypti was more similar to T. eucalypti, the symptoms and cultural characteristics resembled that of T. destructans. The impact of this disease in central Queensland has increased annually and is the major threat to the eucalypt plantation industry in the region.
Resumo:
Climate change is emerging as the single greatest threat to coral-reef ecosystems.The most immediate impacts will be a loss of diversity and changes to fish community composition and may lead to eventual declines in abundance and productivity of key fisheries species. A key component of this research is to assess effects of projected changes in environmental conditions (temperature and ocean acidity) due to climate change on reproduction, growth and development of coral trout (Plectropomus leopardis).Ultimately, this research will fill key knowledge gaps about climate change impacts on larger fishes, which are fundamental to optimizing resilience-based management, and in turn improve the adaptive capacity of industries and communities along the Great Barrier Reef.
Resumo:
The Carp is considered a threat to our native river fish and ecosystems by its ability to adapt to almost any fresh water body and through its feeding and breeding habits, change environmental parameters such as turbidity, light and water temperatures. This project forms part of the Invasive Animal CRC's freshwater program and is part of a strategy to develop control measures for carp. The age and size at maturity for carp in the northern part of their range (ie. Queensland) is currently unknown.
Resumo:
The threat and management of glyphosate# resistant weeds are major issues facing northern region growers. At present five weeds are confirmed glyphosate-resistant: barnyard grass, liverseed grass, windmill grass, annual ryegrass and flaxleaf fleabane. This project used 25 experiments to investigate the ecology of the grass weeds, plus new or improved chemical and non-chemical control tactics for them. The refined glyphosate resistance model developed in this project used the experiments' findings to predict the long-term impacts on evolution of resistance and on seed bank numbers of resistant weeds. These data led to revised management and resistance avoidance strategies, which were published in the Reporter newsletter, and via an on-line risk assessment tool. - See more at: http://finalreports.grdc.com.au/UQ00054#sthash.oTkCN4Sk.dpuf
Resumo:
Cotton leaf curl disease (CLCuD) is a major biosecurity threat to the Australian cotton industry. This proposal seeks cross-industry investment from the cotton (CRDC) and horticulture (HAL) industries to address the threat of exotic whitefly-transmitted viruses. Testing of silverleaf whitefly, the vector of CLCuD, could provide an alternative, cheaper strategy for early warning disease surveillance compared to surveys for disease symptoms. Control of whitefly-transmitted viruses in Australia and overseas will be reviewed to produce an integrated management package for their control in Australia. This will also involve a workshop with key stakeholders and selected overseas participants, to develop a working party to help formulate this package.
Resumo:
Typhoid fever is becoming an ever increasing threat in the developing countries. We have improved considerably upon the existing PCR-based diagnosis method by designing primers against a region that is unique to Salmonella enterica subsp. enterica serovar Typhi and Salmonella enterica subsp. enterica serovar Paratyphi A, corresponding to the STY0312 gene in S. Typhi and its homolog SPA2476 in S. Paratyphi A. An additional set of primers amplify another region in S. Typhi CT18 and S. Typhi Ty2 corresponding to the region between genes STY0313 to STY0316 but which is absent in S. Paratyphi A. The possibility of a false-negative result arising due to mutation in hypervariable genes has been reduced by targeting a gene unique to typhoidal Salmonella serovars as a diagnostic marker. The amplified region has been tested for genomic stability by amplifying the region from clinical isolates of patients from various geographical locations in India, thereby showing that this region is potentially stable. These set of primers can also differentiate between S. Typhi CT18, S. Typhi Ty2, and S. Paratyphi A, which have stable deletions in this specific locus. The PCR assay designed in this study has a sensitivity of 95% compared to the Widal test which has a sensitivity of only 63%. As observed, in certain cases, the PCR assay was more sensitive than the blood culture test was, as the PCR-based detection could also detect dead bacteria.
Resumo:
Forest destruction for agriculture continues to be a major threat to the rich biological diversity in the East Usambara Mountains in the north-eastern corner of Tanzania. The highest ratio of endemic plant and animal species found on 100 km2 anywhere in the world is depending on the remaining natural forests. Forests are vitally important for the local population in many different ways, and nationally they are an important source of water and hydroelectricity. The soils, of low fertility and mostly acidic Ferrasols, mainly have the nutrients in the topsoil. After clear-cutting, the soils soon become poor when the topsoil is eroded. High-value cardamom is nowadays unsustainably cultivated in the natural forests of the East Usambaras. The general aim was to study the possibilities to develop new profitable and sustainable agroforestry systems for the benefit of the local people that could contribute to relieving the pressure on the remaining natural forests in the East Usambara Mountains. Results from a spice crop agroforestry trial, established in cooperation with a local farmer, showed a clear advantage of intercropping cardamom (Elettaria cardamomum) and black pepper (Piper nigrum) with trees, especially with Grevillea robusta. The nitrogen fixing tree species Gliricidia sepium also improved the nitrogen and organic matter content of the soil over levels found in the natural forest. With improved agroforestry methods for spice production the households generated as much as13 times the net income obtained with traditional forest cultivation practices. There are thus sustainable and profitable ways to cultivate spices as cash crops in well-managed homegardens. However, the farmers need stable markets, access to credit and comprehensive extension services. The soil fertility depletion should be reversed with organic manure application and an enabling policy environment for the smallholder-farming sector. Strong farmers organisations and equal rights to resources and decision-making are needed. Organic spices have an increasing demand, and their export would be profitable for these farmers. What is, however, most needed for a change is a political will of a government that understands the importance of agricultural and forestry development for poverty reduction.
Resumo:
The highly lethal Hendra and Nipah viruses have been described for little more than a decade, yet within that time have been aetiologically associated with major livestock and human health impacts, albeit on a limited scale. Do these emerging pathogens pose a broader threat, or are they inconsequential 'viral chatter'. Given their lethality, and the evident multi-generational human-to-human transmission associated with Nipah virus in Bangladesh, it seems prudent to apply the precautionary principle. While much is known of their clinical, pathogenic and epidemiologic features in livestock species and humans, a number of fundamental questions regarding the relationship between the viruses, their natural fruit-bat host and the environment remain unanswered. In this paper, we pose and probe these questions in context, and offer perspectives based primarily on our experience with Hendra virus in Australia, augmented with Nipah virus parallels.
Resumo:
Invasive macrophyte species are a threat to native biodiversity and often grow to nuisance levels, therefore, making control options necessary. Macrophyte control can have pronounced impacts on littoral fish by reducing habitat heterogeneity and the loss of profitable (high density of invertebrates) foraging areas. Yet, there is little known about the impacts of macrophyte removal on invertebrates themselves. We conducted a macrophyte removal experiment, that is the cutting of channels into dense macrophyte beds, to investigate the impact of mechanical macrophyte control on invertebrate and fish communities in a littoral zone dominated by the invasive macrophyte Lagarosiphon major. The effect of macrophyte removal had only a temporary effect on macrophyte areal cover (4 months). Nevertheless, the treatment increased light penetration significantly. However, we could not detect any difference in epiphyton biomass. Invertebrate biomass increased in macrophyte stands 4 months after treatment and there was a shift in the invertebrate community composition. Mechanical control had no effect on invertebrate biodiversity. The higher invertebrate biomass did not translate into a higher fish density in the treated areas. The results of this study indicated that partial mechanical removal is a suitable option to control unwanted macrophyte stands.
Resumo:
Ozone (O3) is a reactive gas present in the troposphere in the range of parts per billion (ppb), i.e. molecules of O3 in 109 molecules of air. Its strong oxidative capacity makes it a key element in tropospheric chemistry and a threat to the integrity of materials, including living organisms. Knowledge and control of O3 levels are an issue in relation to indoor air quality, building material endurance, respiratory human disorders, and plant performance. Ozone is also a greenhouse gas and its abundance is relevant to global warming. The interaction of the lower troposphere with vegetated landscapes results in O3 being removed from the atmosphere by reactions that lead to the oxidation of plant-related components. Details on the rate and pattern of removal on different landscapes as well as the ultimate mechanisms by which this occurs are not fully resolved. This thesis analysed the controlling processes of the transfer of ozone at the air-plant interface. Improvement in the knowledge of these processes benefits the prediction of both atmospheric removal of O3 and its impact on vegetation. This study was based on the measurement and analysis of multi-year field measurements of O3 flux to Scots pine (Pinus sylvestris L.) foliage with a shoot-scale gas-exchange enclosure system. In addition, the analyses made use of simultaneous CO2 and H2O exchange, canopy-scale O3, CO2 and H2O exchange, foliage surface wetness, and environmental variables. All data was gathered at the SMEAR measuring station (southern Finland). Enclosure gas-exchange techniques such as those commonly used for the measure of CO2 and water vapour can be applied to the measure of ozone gas-exchange in the field. Through analysis of the system dynamics the occurring disturbances and noise can be identified. In the system used in this study, the possible artefacts arising from the ozone reactivity towards the system materials in combination with low background concentrations need to be taken into account. The main artefact was the loss of ozone towards the chamber walls, which was found to be very variable. The level of wall-loss was obtained from simultaneous and continuous measurements, and was included in the formulation of the mass balance of O3 concentration inside the chamber. The analysis of the field measurements in this study show that the flux of ozone to the Scots pine foliage is generated in about equal proportions by stomatal and non-stomatal controlled processes. Deposition towards foliage and forest is sustained also during night and winter when stomatal gas-exchange is low or absent. The non-stomatal portion of the flux was analysed further. The pattern of flux in time was found to be an overlap of the patterns of biological activity and presence of wetness in the environment. This was seen to occur both at the shoot and canopy scale. The presence of wetness enhanced the flux not only in the presence of liquid droplets but also during existence of a moisture film on the plant surfaces. The existence of these films and their relation to the ozone sinks was determined by simultaneous measurements of leaf surface wetness and ozone flux. The results seem to suggest ozone would be reacting at the foliage surface and the reaction rate would be mediated by the presence of surface wetness. Alternative mechanisms were discussed, including nocturnal stomatal aperture and emission of reactive volatile compounds. The prediction of the total flux could thus be based on a combination of a model of stomatal behaviour and a model of water absorption on the foliage surfaces. The concepts behind the division of stomatal and non-stomatal sinks were reconsidered. This study showed that it is theoretically possible that a sink located before or near the stomatal aperture prevents or diminishes the diffusion of ozone towards the intercellular air space of the mesophyll. This obstacle to stomatal diffusion happens only under certain conditions, which include a very low presence of reaction sites in the mesophyll, an extremely strong sink located on the outer surfaces or stomatal pore. The relevance, or existence, of this process in natural conditions would need to be assessed further. Potentially strong reactions were considered, including dissolved sulphate, volatile organic compounds, and apoplastic ascorbic acid. Information on the location and the relative abundance of these compounds would be valuable. The highest total flux towards the foliage and forest happens when both the plant activity and ambient moisture are high. The highest uptake into the interior of the foliage happens at large stomatal apertures, provided that scavenging reactions located near the stomatal pore are weak or non-existent. The discussion covers the methodological developments of this study, the relevance of the different controlling factors of ozone flux, the partition amongst its component, and the possible mechanisms of non-stomatal uptake.
Resumo:
The United States is the world s single biggest market area, where the demand for graphic papers has increased by 80 % during the last three decades. However, during the last two decades there have been very big unpredictable changes in the graphic paper markets. For example, the consumption of newsprint started to decline from the late 1980 s, which was surprising compared to the historical consumption and projections. The consumption has declined since. The aim of this study was to see how magazine paper consumption will develop in the United States until 2030. The long-term consumption projection was made using mainly two methods. The first method was to use trend analysis to see how and if the consumption has changed since 1980. The second method was to use qualitative estimate. These estimates are then compared to the so-called classical model projections, which are usually mentioned and used in forestry literature. The purpose of the qualitative analysis is to study magazine paper end-use purposes and to analyze how and with what intensity the changes in society will effect to magazine paper consumption in the long-term. The framework of this study covers theories such as technology adaptation, electronic substitution, electronic publishing and Porter s threat of substitution. Because this study deals with markets, which have showed signs of structural change, a very substantial part of this study covers recent development and newest possible studies and statistics. The following were among the key findings of this study. Different end-uses have very different kinds of future. Electronic substitution is very likely in some end-use purposes, but not in all. Young people i.e. future consumers have very different manners, habits and technological opportunities than our parents did. These will have substantial effects in magazine paper consumption in the long-term. This study concludes to the fact that the change in magazine paper consumption is more likely to be gradual (evolutionary) than sudden collapse (revolutionary). It is also probable that the years of fast growing consumption of magazine papers are behind. Besides the decelerated growth, the consumption of magazine papers will decline slowly in the long-term. The decline will be faster depending on how far in the future we ll extend the study to.
Resumo:
Effective and targeted conservation action requires detailed information about species, their distribution, systematics and ecology as well as the distribution of threat processes which affect them. Knowledge of reptilian diversity remains surprisingly disparate, and innovative means of gaining rapid insight into the status of reptiles are needed in order to highlight urgent conservation cases and inform environmental policy with appropriate biodiversity information in a timely manner. We present the first ever global analysis of extinction risk in reptiles, based on a random representative sample of 1500 species (16% of all currently known species). To our knowledge, our results provide the first analysis of the global conservation status and distribution patterns of reptiles and the threats affecting them, highlighting conservation priorities and knowledge gaps which need to be addressed urgently to ensure the continued survival of the world’s reptiles. Nearly one in five reptilian species are threatened with extinction, with another one in five species classed as Data Deficient. The proportion of threatened reptile species is highest in freshwater environments, tropical regions and on oceanic islands, while data deficiency was highest in tropical areas, such as Central Africa and Southeast Asia, and among fossorial reptiles. Our results emphasise the need for research attention to be focussed on tropical areas which are experiencing the most dramatic rates of habitat loss, on fossorial reptiles for which there is a chronic lack of data, and on certain taxa such as snakes for which extinction risk may currently be underestimated due to lack of population information. Conservation actions specifically need to mitigate the effects of human-induced habitat loss and harvesting, which are the predominant threats to reptiles.
Resumo:
With respect to resource management and environmental impact, organic farming offers rationales for agricultural sustainability. However, agronomic productivity is usually higher with conventional farming. This work aimed at investigating two factors of major importance for the agronomic productivity of organic crop husbandry, nitrogen (N) supply through symbiotic N fixation (SNF) and weed occurrence. Perennial red clover-grass leys and spring cereal crops subjected to regular agricultural practices were studied on 34 organic farms located in the southern and the north-western coastal regions of Finland. Herbage growth, clover content as a proportion of the ley and extent of SNF in perennial leys, and the occurrence of weed species and weed-crop competition in spring cereal stands were related to climate conditions, soil properties, and management measures. The herbage accumulated from the first and the second cut of one- and two-year-old leys averaged 7.5 t DM ha-1 (SD ± 1.7 t DM ha-1); the clover content averaged 43.9% (SD ± 18.8%). Along with the clover content, herbage production decreased with ley age. Radiation use efficiency (RUE) correlated positively with clover proportion but despite low clover contents, three-year-old leys were still productive with regard to RUE. SNF in the accumulated annual growth of one- and two-year-old leys averaged 247.5 kg N ha-1 yr-1 (SD ± 114.4 kg N ha-1 yr-1). It was supposed that if red clover-grass leys constituted 40% of the rotation, then the mean N supply by SNF would be able to sustain two or three succeeding cereal crops (green manure and forage ley, respectively), yielding 3.0 to 4.0 t grain ha-1. Being a function of clover biomass, the SNF increased from the first to the second cut and thereafter declined with ley age. Coefficients of variation of clover contents (and SNF) between and within fields were around 50%, which was about twice as high as those of herbage production. The lower were the clover contents, the higher were the within-field variations of clover as a proportion of the ley. Low clover contents in one-year-old leys and increasing variability with ley age suggested that red clover growth was limited by poor establishment and poor overwintering. The proportions of clover in leys were lower and their variability was higher in the northwest than in the south. Soil properties, primarily texture and structure, had a major impact on clover proportion and herbage production, which largely explained regional differences in ley growth. Within-field variability of soil properties can be amended through site-specific measures, including drainage, liming, and applications of organic manures and mineral fertilizers. Overwintering and the persistence of leys can be improved by the choice of winter-hardy varieties, careful establishment and the appropriate harvest regime. Mean grain yields of spring cereal crops amounted to 3.2 t ha-1 in the south and 3.6 t ha-1 in the northwest. At 570 and 565 m-2 for the south and northwest respectively, mean weed densities did not differ between the regions, whereas the respective mean weed biomass of 697 and 1594 kg dry weight ha-1, respectively did differ. Weed abundance varied remarkably between single fields. The number of weed species was higher in the south than in the northwest. For example, Fumaria officinalis and Lamium spp. were found only in the south. Frequencies and abundances of Lapsana communis, Myosotis arvensis, Polygonum aviculare, Tripleurospermum inodorum, and Vicia spp. were higher in the south, whereas those of Elymus repens, Persicaria spp. and Spergula arvensis were higher in the northwest. The number of years since conversion to organic farming, i.e. long-term management, was one of the variables that explained the abundance of single weed species. E. repens was the weed species whose biomass increased most with the duration of organic farming. Another significant variable was crop biomass, which was affected by short-term management. The presence of different weed species was related to the duration of organic farming and to low crop yield. This finding demonstrated that it was not the organic farming regime per se, which resulted in high weed infestation and low yielding crops, but failures in the understanding and the management of organic farming systems. Successful weed control relies on farm- and field-specific long- and short-term management approaches. The agronomic productivity of ley and spring cereal crops managed by full-time farmers with an interest in organic farming was on the same level as of the mean for conventional farming. Given the many options for further improvements of the agronomic performance of organic arable systems, organic farming offers foundations for the development of sustainable agriculture. The main threat to the sustainability of farming in Finland, both conventional and organic, is the spatial separation of crop production and animal husbandry by region, along with the simplification of associated crop rotations.