896 resultados para State-feedback control
Resumo:
This paper illustrates how nonlinear programming and simulation tools, which are available in packages such as MATLAB and SIMULINK, can easily be used to solve optimal control problems with state- and/or input-dependent inequality constraints. The method presented is illustrated with a model of a single-link manipulator. The method is suitable to be taught to advanced undergraduate and Master's level students in control engineering.
Resumo:
The combination of model predictive control based on linear models (MPC) with feedback linearization (FL) has attracted interest for a number of years, giving rise to MPC+FL control schemes. An important advantage of such schemes is that feedback linearizable plants can be controlled with a linear predictive controller with a fixed model. Handling input constraints within such schemes is difficult since simple bound contraints on the input become state dependent because of the nonlinear transformation introduced by feedback linearization. This paper introduces a technique for handling input constraints within a real time MPC/FL scheme, where the plant model employed is a class of dynamic neural networks. The technique is based on a simple affine transformation of the feasible area. A simulated case study is presented to illustrate the use and benefits of the technique.
Resumo:
An H-infinity control strategy has been developed for the design of controllers used in feedback controlled electrical substitution measurements (FCESM). The methodology has the potential to provide substantial improvements in both response time and resolution of a millimetre-wave absolute photoacoustic power meter.
Resumo:
National food control systems are a key element in the protection of consumers from unsafe foods and from other fraudulent practices. International guidance is available and provides a framework for enhancing national systems. However, it is recognized that before reaching decisions on the necessary improvements to a national system, an analysis is required of the current state of key elements in the present system. This paper provides such an analysis for the State of Kuwait. The fragmented nature of the food control system is described. Four key elements of the Kuwaiti system are analyzed: the legal framework, the administrative structures, the enforcement activity and the provision of education and training. It is noted that the country has a dependence on imported foods and that the present national food control system is largely based on an historic approach to food sampling at the point of import and is unsustainable. The paper recommends a more coordinated approach to food safety control in Kuwait with a significant increase in the use of risk analysis methods to target enforcement.
Resumo:
Previous studies have made use of simplified general circulation models (sGCMs) to investigate the atmospheric response to various forcings. In particular, several studies have investigated the tropospheric response to changes in stratospheric temperature. This is potentially relevant for many climate forcings. Here the impact of changing the tropospheric climatology on the modeled response to perturbations in stratospheric temperature is investigated by the introduction of topography into the model and altering the tropospheric jet structure. The results highlight the need for very long integrations so as to determine accurately the magnitude of response. It is found that introducing topography into the model and thus removing the zonally symmetric nature of the model’s boundary conditions reduces the magnitude of response to stratospheric heating. However, this reduction is of comparable size to the variability in the magnitude of response between different ensemble members of the same 5000-day experiment. Investigations into the impact of varying tropospheric jet structure reveal a trend with lower-latitude/narrower jets having a much larger magnitude response to stratospheric heating than higher-latitude/wider jets. The jet structures that respond more strongly to stratospheric heating also exhibit longer time scale variability in their control run simulations, consistent with the idea that a feedback between the eddies and the mean flow is both responsible for the persistence of the control run variability and important in producing the tropospheric response to stratospheric temperature perturbations.
Resumo:
The relationship between minimum variance and minimum expected quadratic loss feedback controllers for linear univariate discrete-time stochastic systems is reviewed by taking the approach used by Caines. It is shown how the two methods can be regarded as providing identical control actions as long as a noise-free measurement state-space model is employed.
Resumo:
Variations on the standard Kohonen feature map can enable an ordering of the map state space by using only a limited subset of the complete input vector. Also it is possible to employ merely a local adaptation procedure to order the map, rather than having to rely on global variables and objectives. Such variations have been included as part of a hybrid learning system (HLS) which has arisen out of a genetic-based classifier system. In the paper a description of the modified feature map is given, which constitutes the HLSs long term memory, and results in the control of a simple maze running task are presented, thereby demonstrating the value of goal related feedback within the overall network.
Resumo:
The authors present an active vision system which performs a surveillance task in everyday dynamic scenes. The system is based around simple, rapid motion processors and a control strategy which uses both position and velocity information. The surveillance task is defined in terms of two separate behavioral subsystems, saccade and smooth pursuit, which are demonstrated individually on the system. It is shown how these and other elementary responses to 2D motion can be built up into behavior sequences, and how judicious close cooperation between vision and control results in smooth transitions between the behaviors. These ideas are demonstrated by an implementation of a saccade to smooth pursuit surveillance system on a high-performance robotic hand/eye platform.
Resumo:
Eigenvalue assignment methods are used widely in the design of control and state-estimation systems. The corresponding eigenvectors can be selected to ensure robustness. For specific applications, eigenstructure assignment can also be applied to achieve more general performance criteria. In this paper a new output feedback design approach using robust eigenstructure assignment to achieve prescribed mode input and output coupling is described. A minimisation technique is developed to improve both the mode coupling and the robustness of the system, whilst allowing the precision of the eigenvalue placement to be relaxed. An application to the design of an automatic flight control system is demonstrated.
Resumo:
Conditions are given under which a descriptor, or generalized state-space system can be regularized by output feedback. It is shown that under these conditions, proportional and derivative output feedback controls can be constructed such that the closed-loop system is regular and has index at most one. This property ensures the solvability of the resulting system of dynamic-algebraic equations. A reduced form is given that allows the system properties as well as the feedback to be determined. The construction procedures used to establish the theory are based only on orthogonal matrix decompositions and can therefore be implemented in a numerically stable way.
Resumo:
Robustness in multi-variable control system design requires that the solution to the design problem be insensitive to perturbations in the system data. In this paper we discuss measures of robustness for generalized state-space, or descriptor, systems and describe algorithmic techniques for optimizing robustness for various applications.
Resumo:
The quality control, validation and verification of the European Flood Alert System (EFAS) are described. EFAS is designed as a flood early warning system at pan-European scale, to complement national systems and provide flood warnings more than 2 days before a flood. On average 20–30 alerts per year are sent out to the EFAS partner network which consists of 24 National hydrological authorities responsible for transnational river basins. Quality control of the system includes the evaluation of the hits, misses and false alarms, showing that EFAS has more than 50% of the time hits. Furthermore, the skills of both the meteorological as well as the hydrological forecasts are evaluated, and are included here for a 10-year period. Next, end-user needs and feedback are systematically analysed. Suggested improvements, such as real-time river discharge updating, are currently implemented.
Resumo:
The feedback mechanism used in a brain-computer interface (BCI) forms an integral part of the closed-loop learning process required for successful operation of a BCI. However, ultimate success of the BCI may be dependent upon the modality of the feedback used. This study explores the use of music tempo as a feedback mechanism in BCI and compares it to the more commonly used visual feedback mechanism. Three different feedback modalities are compared for a kinaesthetic motor imagery BCI: visual, auditory via music tempo, and a combined visual and auditory feedback modality. Visual feedback is provided via the position, on the y-axis, of a moving ball. In the music feedback condition, the tempo of a piece of continuously generated music is dynamically adjusted via a novel music-generation method. All the feedback mechanisms allowed users to learn to control the BCI. However, users were not able to maintain as stable control with the music tempo feedback condition as they could in the visual feedback and combined conditions. Additionally, the combined condition exhibited significantly less inter-user variability, suggesting that multi-modal feedback may lead to more robust results. Finally, common spatial patterns are used to identify participant-specific spatial filters for each of the feedback modalities. The mean optimal spatial filter obtained for the music feedback condition is observed to be more diffuse and weaker than the mean spatial filters obtained for the visual and combined feedback conditions.
H-infinity control design for time-delay linear systems: a rational transfer function based approach
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)