868 resultados para Standardization of bioremediation


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The role of Acidithiobacillus group of bacteria in acid generation and heavy metal dissolution was studied with relevance to some Indian mines. Microorganisms implicated in acid generation such as Acidithiobacillus Acidithicibacillus thiooxidans and Leptospirillum ferrooxidans were isolated from abandoned mines, waste rocks and tailing dumps. Arsenite oxidizing Thiomonas and Bacillus group of bacteria were isolated and their ability to oxidize As (111) to As (V) established. Mine isolated Sulfate reducing bacteria were used to remove dissolved copper, zinc, iron and arsenic from solutions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The industry foundation classes (IFC) file format is one of the most complex and ambitious IT standardization projects currently being undertaken in any industry, focusing on the development of an open and neutral standard for exchanging building model data. Scientific literature related to the IFC standard has dominantly been technical so far; research looking at the IFC standard from an industry standardization per- spective could offer valuable new knowledge for both theory and practice. This paper proposes the use of IT standardization and IT adoption theories, supported by studies done within construction IT, to lay a theoretical foundation for further empirical analysis of the standardization process of the IFC file format.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Diesel spills contaminate aquatic and terrestrial environments. To prevent the environmental and health risks, the remediation needs to be advanced. Bioremediation, i.e., degradation by microbes, is one of the suitable methods for cleaning diesel contamination. In monitored natural attenuation technique are natural processes in situ combined, including bioremediation, volatilization, sorption, dilution and dispersion. Soil bacteria are capable of adapting to degrade environmental pollutants, but in addition, some soil types may have indigenous bacteria that are naturally suitable for degradation. The objectives for this work were (1) to find a feasible and economical technique to remediate oil spilled into Baltic Sea water and (2) to bioremediate soil contaminated by diesel oil. Moreover, the aim was (3) to study the potential for natural attenuation and the indigenous bacteria in soil, and possible adaptation to degrade diesel hydrocarbons. In the aquatic environment, the study concentrated on diesel oil sorption to cotton grass fiber, a natural by-product of peat harvesting. The impact of diesel pollution was followed in bacteria, phytoplankton and mussels. In a terrestrial environment, the focus was to compare the methods of enhanced biodegradation (biostimulation and bioaugmentation), and to study natural attenuation of oil hydrocarbons in different soil types and the effect that a history of previous contamination may have on the bioremediation potential. (1) In the aquatic environment, rapid removal of diesel oil was significant for survival of tested species and thereby diversity maintained. Cotton grass not only absorbed the diesel but also benefited the bacterial growth by providing a large colonizable surface area and hence oil-microbe contact area. Therefore use of this method would enhance bioremediation of diesel spills. (2) Biostimulation enhances bioremediation, and (3) indigenous diesel-degrading bacteria are present in boreal environments, so microbial inocula are not always needed. In the terrestrial environment experiments, the combination of aeration and addition of slowly released nitrogen advanced the oil hydrocarbon degradation. Previous contamination of soil gives the bacterial community the potential for rapid adaptation and efficient degradation of the same type of contaminant. When the freshly contaminated site needs addition of diesel degraders, previously contaminated and remediated soil could be used as a bacterial inoculum. Another choice of inoculum could be conifer forest soil, which provides a plentiful population of degraders, and based on the present results, could be considered as a safe non-polluted inoculum. According to the findings in this thesis, bioremediation (microbial degradation) and monitored natural attenuation (microbial, physical and chemical degradation) are both suitable techniques for remediation of diesel-contaminated sites in Finland.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The potential of Citrobacter freundii, a Gram negative bacteria for the remediation of hexavalent chromium (Cr(VI)) and trivalent chromium (Cr(III))) from aqueous solutions was investigated. Bioremediation of Cr(VI) involved both biosorption and bioreduction processes, as compared to only biosorption process observed with respect to Cr(III) bioremediation. In the case of Cr(VI) bioremediation studies, about 59 % biosorption was achieved at an equilibrium time of 2 h, initial Cr(VI) concentration of 4 mg/L, pH 1 and a biomass loading of 5x10(11) cells/mL. The remainder, 41 %, was found to be in the form of Cr(111) ions owing to bioreduction of Cr(VI) by the bacteria resulting in the absence of Cr(VI) ions in the residue, there by meeting the USEPA specifications. Similar studies were carried out using Cr(III) solution for an equilibrium time of 2 h, Cr(III) concentration of 4 mg/L, pH 3 and a biomass loading of 6.3x10(11) cells/mL., wherein a maximum biosorption of about 30 % was achieved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present study, fish cutlets were prepared from bleached and unbleached mackerel mincemeat. Fish cutlets prepared from bleached meat had scored higher values for taste, flavour and overall acceptability as compared to those from unbleached mincemeat. Fish cutlets prepared with corn flour at the rate of 15% of fish mincemeat had scored higher values for all attributes as compared to other levels. Between the bleached and unbleached mincemeat, the scores for cutlet prepared with bleached mincemeat had higher score than that for the latter. There were no cracks in cutlets prepared with 15% and above corn flour levels as compared to those with lower levels. Fish cutlets prepared from bleached and unbleached mincemeat with spice mixture at 20 and 30% of the fish mince, respectively, had higher scores for taste, flavour, texture and overall acceptability as compared to those with other levels. Organoleptic quality of cutlet prepared from bleached and unbleached mackerel mince did not show changes in the appearance, colour and texture during storage. Changes were more prominent in flavour, taste and overall acceptability. Fish cutlets prepared from bleached mincemeat were acceptable for two months and those from unbleached mincemeat were acceptable up to one month from the point of view of organoleptic and biochemical qualities.