890 resultados para Solving-problem algorithms


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of optimal design of a multi-gravity-assist space trajectories, with free number of deep space maneuvers (MGADSM) poses multi-modal cost functions. In the general form of the problem, the number of design variables is solution dependent. To handle global optimization problems where the number of design variables varies from one solution to another, two novel genetic-based techniques are introduced: hidden genes genetic algorithm (HGGA) and dynamic-size multiple population genetic algorithm (DSMPGA). In HGGA, a fixed length for the design variables is assigned for all solutions. Independent variables of each solution are divided into effective and ineffective (hidden) genes. Hidden genes are excluded in cost function evaluations. Full-length solutions undergo standard genetic operations. In DSMPGA, sub-populations of fixed size design spaces are randomly initialized. Standard genetic operations are carried out for a stage of generations. A new population is then created by reproduction from all members based on their relative fitness. The resulting sub-populations have different sizes from their initial sizes. The process repeats, leading to increasing the size of sub-populations of more fit solutions. Both techniques are applied to several MGADSM problems. They have the capability to determine the number of swing-bys, the planets to swing by, launch and arrival dates, and the number of deep space maneuvers as well as their locations, magnitudes, and directions in an optimal sense. The results show that solutions obtained using the developed tools match known solutions for complex case studies. The HGGA is also used to obtain the asteroids sequence and the mission structure in the global trajectory optimization competition (GTOC) problem. As an application of GA optimization to Earth orbits, the problem of visiting a set of ground sites within a constrained time frame is solved. The J2 perturbation and zonal coverage are considered to design repeated Sun-synchronous orbits. Finally, a new set of orbits, the repeated shadow track orbits (RSTO), is introduced. The orbit parameters are optimized such that the shadow of a spacecraft on the Earth visits the same locations periodically every desired number of days.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this report is to study distributed (decentralized) three phase optimal power flow (OPF) problem in unbalanced power distribution networks. A full three phase representation of the distribution networks is considered to account for the highly unbalance state of the distribution networks. All distribution network’s series/shunt components, and load types/combinations had been modeled on commercial version of General Algebraic Modeling System (GAMS), the high-level modeling system for mathematical programming and optimization. The OPF problem has been successfully implemented and solved in a centralized approach and distributed approach, where the objective is to minimize the active power losses in the entire system. The study was implemented on the IEEE-37 Node Test Feeder. A detailed discussion of all problem sides and aspects starting from the basics has been provided in this study. Full simulation results have been provided at the end of the report.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fuzzy community detection is to identify fuzzy communities in a network, which are groups of vertices in the network such that the membership of a vertex in one community is in [0,1] and that the sum of memberships of vertices in all communities equals to 1. Fuzzy communities are pervasive in social networks, but only a few works have been done for fuzzy community detection. Recently, a one-step forward extension of Newman’s Modularity, the most popular quality function for disjoint community detection, results into the Generalized Modularity (GM) that demonstrates good performance in finding well-known fuzzy communities. Thus, GMis chosen as the quality function in our research. We first propose a generalized fuzzy t-norm modularity to investigate the effect of different fuzzy intersection operators on fuzzy community detection, since the introduction of a fuzzy intersection operation is made feasible by GM. The experimental results show that the Yager operator with a proper parameter value performs better than the product operator in revealing community structure. Then, we focus on how to find optimal fuzzy communities in a network by directly maximizing GM, which we call it Fuzzy Modularity Maximization (FMM) problem. The effort on FMM problem results into the major contribution of this thesis, an efficient and effective GM-based fuzzy community detection method that could automatically discover a fuzzy partition of a network when it is appropriate, which is much better than fuzzy partitions found by existing fuzzy community detection methods, and a crisp partition of a network when appropriate, which is competitive with partitions resulted from the best disjoint community detections up to now. We address FMM problem by iteratively solving a sub-problem called One-Step Modularity Maximization (OSMM). We present two approaches for solving this iterative procedure: a tree-based global optimizer called Find Best Leaf Node (FBLN) and a heuristic-based local optimizer. The OSMM problem is based on a simplified quadratic knapsack problem that can be solved in linear time; thus, a solution of OSMM can be found in linear time. Since the OSMM algorithm is called within FBLN recursively and the structure of the search tree is non-deterministic, we can see that the FMM/FBLN algorithm runs in a time complexity of at least O (n2). So, we also propose several highly efficient and very effective heuristic algorithms namely FMM/H algorithms. We compared our proposed FMM/H algorithms with two state-of-the-art community detection methods, modified MULTICUT Spectral Fuzzy c-Means (MSFCM) and Genetic Algorithm with a Local Search strategy (GALS), on 10 real-world data sets. The experimental results suggest that the H2 variant of FMM/H is the best performing version. The H2 algorithm is very competitive with GALS in producing maximum modularity partitions and performs much better than MSFCM. On all the 10 data sets, H2 is also 2-3 orders of magnitude faster than GALS. Furthermore, by adopting a simply modified version of the H2 algorithm as a mutation operator, we designed a genetic algorithm for fuzzy community detection, namely GAFCD, where elite selection and early termination are applied. The crossover operator is designed to make GAFCD converge fast and to enhance GAFCD’s ability of jumping out of local minimums. Experimental results on all the data sets show that GAFCD uncovers better community structure than GALS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We solve two inverse spectral problems for star graphs of Stieltjes strings with Dirichlet and Neumann boundary conditions, respectively, at a selected vertex called root. The root is either the central vertex or, in the more challenging problem, a pendant vertex of the star graph. At all other pendant vertices Dirichlet conditions are imposed; at the central vertex, at which a mass may be placed, continuity and Kirchhoff conditions are assumed. We derive conditions on two sets of real numbers to be the spectra of the above Dirichlet and Neumann problems. Our solution for the inverse problems is constructive: we establish algorithms to recover the mass distribution on the star graph (i.e. the point masses and lengths of subintervals between them) from these two spectra and from the lengths of the separate strings. If the root is a pendant vertex, the two spectra uniquely determine the parameters on the main string (i.e. the string incident to the root) if the length of the main string is known. The mass distribution on the other edges need not be unique; the reason for this is the non-uniqueness caused by the non-strict interlacing of the given data in the case when the root is the central vertex. Finally, we relate of our results to tree-patterned matrix inverse problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the fermion loop formulation the contributions to the partition function naturally separate into topological equivalence classes with a definite sign. This separation forms the basis for an efficient fermion simulation algorithm using a fluctuating open fermion string. It guarantees sufficient tunnelling between the topological sectors, and hence provides a solution to the fermion sign problem affecting systems with broken supersymmetry. Moreover, the algorithm shows no critical slowing down even in the massless limit and can hence handle the massless Goldstino mode emerging in the supersymmetry broken phase. In this paper – the third in a series of three – we present the details of the simulation algorithm and demonstrate its efficiency by means of a few examples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymorbid patients, diverse diagnostic and therapeutic options, more complex hospital structures, financial incentives, benchmarking, as well as perceptional and societal changes put pressure on medical doctors, specifically if medical errors surface. This is particularly true for the emergency department setting, where patients face delayed or erroneous initial diagnostic or therapeutic measures and costly hospital stays due to sub-optimal triage. A "biomarker" is any laboratory tool with the potential better to detect and characterise diseases, to simplify complex clinical algorithms and to improve clinical problem solving in routine care. They must be embedded in clinical algorithms to complement and not replace basic medical skills. Unselected ordering of laboratory tests and shortcomings in test performance and interpretation contribute to diagnostic errors. Test results may be ambiguous with false positive or false negative results and generate unnecessary harm and costs. Laboratory tests should only be ordered, if results have clinical consequences. In studies, we must move beyond the observational reporting and meta-analysing of diagnostic accuracies for biomarkers. Instead, specific cut-off ranges should be proposed and intervention studies conducted to prove outcome relevant impacts on patient care. The focus of this review is to exemplify the appropriate use of selected laboratory tests in the emergency setting for which randomised-controlled intervention studies have proven clinical benefit. Herein, we focus on initial patient triage and allocation of treatment opportunities in patients with cardiorespiratory diseases in the emergency department. The following five biomarkers will be discussed: proadrenomedullin for prognostic triage assessment and site-of-care decisions, cardiac troponin for acute myocardial infarction, natriuretic peptides for acute heart failure, D-dimers for venous thromboembolism, C-reactive protein as a marker of inflammation, and procalcitonin for antibiotic stewardship in infections of the respiratory tract and sepsis. For these markers we provide an overview on physiopathology, historical evolution of evidence, strengths and limitations for a rational implementation into clinical algorithms. We critically discuss results from key intervention trials that led to their use in clinical routine and potential future indications. The rational for the use of all these biomarkers, first, tackle diagnostic ambiguity and consecutive defensive medicine, second, delayed and sub-optimal therapeutic decisions, and third, prognostic uncertainty with misguided triage and site-of-care decisions all contributing to the waste of our limited health care resources. A multifaceted approach for a more targeted management of medical patients from emergency admission to discharge including biomarkers, will translate into better resource use, shorter length of hospital stay, reduced overall costs, improved patients satisfaction and outcomes in terms of mortality and re-hospitalisation. Hopefully, the concepts outlined in this review will help the reader to improve their diagnostic skills and become more parsimonious laboratory test requesters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a shallow dialogue analysis model, aimed at human-human dialogues in the context of staff or business meetings. Four components of the model are defined, and several machine learning techniques are used to extract features from dialogue transcripts: maximum entropy classifiers for dialogue acts, latent semantic analysis for topic segmentation, or decision tree classifiers for discourse markers. A rule-based approach is proposed for solving cross-modal references to meeting documents. The methods are trained and evaluated thanks to a common data set and annotation format. The integration of the components into an automated shallow dialogue parser opens the way to multimodal meeting processing and retrieval applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work discusses an iterative procedure of shaping offset dual-reflector antennas based on geometrical optics considering both far-field and near-field measurements of amplitude and phase from the feed horn. The surfaces synthesized will transform a known radiation field of a feed to a desired aperture distribution. This technique is applied for both circular and elliptical apertures and has the advantage to simplify the problem compared with existing techniques based on solving nonlinear differential equations. A MATLAB tool has been developed to implement the shaping algorithms. This procedure is applied for the design of a 1.1 m high-gain antenna for the ESA’s Solar Orbiter spacecraft. This antenna operating at X-band will manage high data rate and high efficiency communications with Earth stations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evolutionary search algorithms have become an essential asset in the algorithmic toolbox for solving high-dimensional optimization problems in across a broad range of bioinformatics problems. Genetic algorithms, the most well-known and representative evolutionary search technique, have been the subject of the major part of such applications. Estimation of distribution algorithms (EDAs) offer a novel evolutionary paradigm that constitutes a natural and attractive alternative to genetic algorithms. They make use of a probabilistic model, learnt from the promising solutions, to guide the search process. In this paper, we set out a basic taxonomy of EDA techniques, underlining the nature and complexity of the probabilistic model of each EDA variant. We review a set of innovative works that make use of EDA techniques to solve challenging bioinformatics problems, emphasizing the EDA paradigm's potential for further research in this domain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract interpretation has been widely used for the analysis of object-oriented languages and, in particular, Java source and bytecode. However, while most existing work deals with the problem of flnding expressive abstract domains that track accurately the characteristics of a particular concrete property, the underlying flxpoint algorithms have received comparatively less attention. In fact, many existing (abstract interpretation based—) flxpoint algorithms rely on relatively inefHcient techniques for solving inter-procedural caligraphs or are speciflc and tied to particular analyses. We also argüe that the design of an efficient fixpoint algorithm is pivotal to supporting the analysis of large programs. In this paper we introduce a novel algorithm for analysis of Java bytecode which includes a number of optimizations in order to reduce the number of iterations. The algorithm is parametric -in the sense that it is independent of the abstract domain used and it can be applied to different domains as "plug-ins"-, multivariant, and flow-sensitive. Also, is based on a program transformation, prior to the analysis, that results in a highly uniform representation of all the features in the language and therefore simplifies analysis. Detailed descriptions of decompilation solutions are given and discussed with an example. We also provide some performance data from a preliminary implementation of the analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract The proliferation of wireless sensor networks and the variety of envisioned applications associated with them has motivated the development of distributed algorithms for collaborative processing over networked systems. One of the applications that has attracted the attention of the researchers is that of target localization where the nodes of the network try to estimate the position of an unknown target that lies within its coverage area. Particularly challenging is the problem of estimating the target’s position when we use received signal strength indicator (RSSI) due to the nonlinear relationship between the measured signal and the true position of the target. Many of the existing approaches suffer either from high computational complexity (e.g., particle filters) or lack of accuracy. Further, many of the proposed solutions are centralized which make their application to a sensor network questionable. Depending on the application at hand and, from a practical perspective it could be convenient to find a balance between localization accuracy and complexity. Into this direction we approach the maximum likelihood location estimation problem by solving a suboptimal (and more tractable) problem. One of the main advantages of the proposed scheme is that it allows for a decentralized implementation using distributed processing tools (e.g., consensus and convex optimization) and therefore, it is very suitable to be implemented in real sensor networks. If further accuracy is needed an additional refinement step could be performed around the found solution. Under the assumption of independent noise among the nodes such local search can be done in a fully distributed way using a distributed version of the Gauss-Newton method based on consensus. Regardless of the underlying application or function of the sensor network it is al¬ways necessary to have a mechanism for data reporting. While some approaches use a special kind of nodes (called sink nodes) for data harvesting and forwarding to the outside world, there are however some scenarios where such an approach is impractical or even impossible to deploy. Further, such sink nodes become a bottleneck in terms of traffic flow and power consumption. To overcome these issues instead of using sink nodes for data reporting one could use collaborative beamforming techniques to forward directly the generated data to a base station or gateway to the outside world. In a dis-tributed environment like a sensor network nodes cooperate in order to form a virtual antenna array that can exploit the benefits of multi-antenna communications. In col-laborative beamforming nodes synchronize their phases in order to add constructively at the receiver. Some of the inconveniences associated with collaborative beamforming techniques is that there is no control over the radiation pattern since it is treated as a random quantity. This may cause interference to other coexisting systems and fast bat-tery depletion at the nodes. Since energy-efficiency is a major design issue we consider the development of a distributed collaborative beamforming scheme that maximizes the network lifetime while meeting some quality of service (QoS) requirement at the re¬ceiver side. Using local information about battery status and channel conditions we find distributed algorithms that converge to the optimal centralized beamformer. While in the first part we consider only battery depletion due to communications beamforming, we extend the model to account for more realistic scenarios by the introduction of an additional random energy consumption. It is shown how the new problem generalizes the original one and under which conditions it is easily solvable. By formulating the problem under the energy-efficiency perspective the network’s lifetime is significantly improved. Resumen La proliferación de las redes inalámbricas de sensores junto con la gran variedad de posi¬bles aplicaciones relacionadas, han motivado el desarrollo de herramientas y algoritmos necesarios para el procesado cooperativo en sistemas distribuidos. Una de las aplicaciones que suscitado mayor interés entre la comunidad científica es la de localization, donde el conjunto de nodos de la red intenta estimar la posición de un blanco localizado dentro de su área de cobertura. El problema de la localization es especialmente desafiante cuando se usan niveles de energía de la seal recibida (RSSI por sus siglas en inglés) como medida para la localization. El principal inconveniente reside en el hecho que el nivel de señal recibida no sigue una relación lineal con la posición del blanco. Muchas de las soluciones actuales al problema de localization usando RSSI se basan en complejos esquemas centralizados como filtros de partículas, mientas que en otras se basan en esquemas mucho más simples pero con menor precisión. Además, en muchos casos las estrategias son centralizadas lo que resulta poco prácticos para su implementación en redes de sensores. Desde un punto de vista práctico y de implementation, es conveniente, para ciertos escenarios y aplicaciones, el desarrollo de alternativas que ofrezcan un compromiso entre complejidad y precisión. En esta línea, en lugar de abordar directamente el problema de la estimación de la posición del blanco bajo el criterio de máxima verosimilitud, proponemos usar una formulación subóptima del problema más manejable analíticamente y que ofrece la ventaja de permitir en¬contrar la solución al problema de localization de una forma totalmente distribuida, convirtiéndola así en una solución atractiva dentro del contexto de redes inalámbricas de sensores. Para ello, se usan herramientas de procesado distribuido como los algorit¬mos de consenso y de optimización convexa en sistemas distribuidos. Para aplicaciones donde se requiera de un mayor grado de precisión se propone una estrategia que con¬siste en la optimización local de la función de verosimilitud entorno a la estimación inicialmente obtenida. Esta optimización se puede realizar de forma descentralizada usando una versión basada en consenso del método de Gauss-Newton siempre y cuando asumamos independencia de los ruidos de medida en los diferentes nodos. Independientemente de la aplicación subyacente de la red de sensores, es necesario tener un mecanismo que permita recopilar los datos provenientes de la red de sensores. Una forma de hacerlo es mediante el uso de uno o varios nodos especiales, llamados nodos “sumidero”, (sink en inglés) que actúen como centros recolectores de información y que estarán equipados con hardware adicional que les permita la interacción con el exterior de la red. La principal desventaja de esta estrategia es que dichos nodos se convierten en cuellos de botella en cuanto a tráfico y capacidad de cálculo. Como alter¬nativa se pueden usar técnicas cooperativas de conformación de haz (beamforming en inglés) de manera que el conjunto de la red puede verse como un único sistema virtual de múltiples antenas y, por tanto, que exploten los beneficios que ofrecen las comu¬nicaciones con múltiples antenas. Para ello, los distintos nodos de la red sincronizan sus transmisiones de manera que se produce una interferencia constructiva en el recep¬tor. No obstante, las actuales técnicas se basan en resultados promedios y asintóticos, cuando el número de nodos es muy grande. Para una configuración específica se pierde el control sobre el diagrama de radiación causando posibles interferencias sobre sis¬temas coexistentes o gastando más potencia de la requerida. La eficiencia energética es una cuestión capital en las redes inalámbricas de sensores ya que los nodos están equipados con baterías. Es por tanto muy importante preservar la batería evitando cambios innecesarios y el consecuente aumento de costes. Bajo estas consideraciones, se propone un esquema de conformación de haz que maximice el tiempo de vida útil de la red, entendiendo como tal el máximo tiempo que la red puede estar operativa garantizando unos requisitos de calidad de servicio (QoS por sus siglas en inglés) que permitan una decodificación fiable de la señal recibida en la estación base. Se proponen además algoritmos distribuidos que convergen a la solución centralizada. Inicialmente se considera que la única causa de consumo energético se debe a las comunicaciones con la estación base. Este modelo de consumo energético es modificado para tener en cuenta otras formas de consumo de energía derivadas de procesos inherentes al funcionamiento de la red como la adquisición y procesado de datos, las comunicaciones locales entre nodos, etc. Dicho consumo adicional de energía se modela como una variable aleatoria en cada nodo. Se cambia por tanto, a un escenario probabilístico que generaliza el caso determinista y se proporcionan condiciones bajo las cuales el problema se puede resolver de forma eficiente. Se demuestra que el tiempo de vida de la red mejora de forma significativa usando el criterio propuesto de eficiencia energética.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La Organización Mundial de la Salud (OMS) prevé que para el año 2020, el Daño Cerebral Adquirido (DCA) estará entre las 10 causas más comunes de discapacidad. Estas lesiones, dadas sus consecuencias físicas, sensoriales, cognitivas, emocionales y socioeconómicas, cambian dramáticamente la vida de los pacientes y sus familias. Las nuevas técnicas de intervención precoz y el desarrollo de la medicina intensiva en la atención al DCA han mejorado notablemente la probabilidad de supervivencia. Sin embargo, hoy por hoy, las lesiones cerebrales no tienen ningún tratamiento quirúrgico que tenga por objetivo restablecer la funcionalidad perdida, sino que las terapias rehabilitadoras se dirigen hacia la compensación de los déficits producidos. Uno de los objetivos principales de la neurorrehabilitación es, por tanto, dotar al paciente de la capacidad necesaria para ejecutar las Actividades de Vida Diaria (AVDs) necesarias para desarrollar una vida independiente, siendo fundamentales aquellas en las que la Extremidad Superior (ES) está directamente implicada, dada su gran importancia a la hora de la manipulación de objetos. Con la incorporación de nuevas soluciones tecnológicas al proceso de neurorrehabilitación se pretende alcanzar un nuevo paradigma centrado en ofrecer una práctica personalizada, monitorizada y ubicua con una valoración continua de la eficacia y de la eficiencia de los procedimientos y con capacidad de generar conocimientos que impulsen la ruptura del paradigma de actual. Los nuevos objetivos consistirán en minimizar el impacto de las enfermedades que afectan a la capacidad funcional de las personas, disminuir el tiempo de incapacidad y permitir una gestión más eficiente de los recursos. Estos objetivos clínicos, de gran impacto socio-económico, sólo pueden alcanzarse desde una apuesta decidida en nuevas tecnologías, metodologías y algoritmos capaces de ocasionar la ruptura tecnológica necesaria que permita superar las barreras que hasta el momento han impedido la penetración tecnológica en el campo de la rehabilitación de manera universal. De esta forma, los trabajos y resultados alcanzados en la Tesis son los siguientes: 1. Modelado de AVDs: como paso previo a la incorporación de ayudas tecnológicas al proceso rehabilitador, se hace necesaria una primera fase de modelado y formalización del conocimiento asociado a la ejecución de las actividades que se realizan como parte de la terapia. En particular, las tareas más complejas y a su vez con mayor repercusión terapéutica son las AVDs, cuya formalización permitirá disponer de modelos de movimiento sanos que actuarán de referencia para futuros desarrollos tecnológicos dirigidos a personas con DCA. Siguiendo una metodología basada en diagramas de estados UML se han modelado las AVDs 'servir agua de una jarra' y 'coger un botella' 2. Monitorización ubícua del movimiento de la ES: se ha diseñado, desarrollado y validado un sistema de adquisición de movimiento basado en tecnología inercial que mejora las limitaciones de los dispositivos comerciales actuales (coste muy elevado e incapacidad para trabajar en entornos no controlados); los altos coeficientes de correlación y los bajos niveles de error obtenidos en los corregistros llevados a cabo con el sistema comercial BTS SMART-D demuestran la alta precisión del sistema. También se ha realizado un trabajo de investigación exploratorio de un sistema de captura de movimiento de coste muy reducido basado en visión estereoscópica, habiéndose detectado los puntos clave donde se hace necesario incidir desde un punto de vista tecnológico para su incorporación en un entorno real 3. Resolución del Problema Cinemático Inverso (PCI): se ha diseñado, desarrollado y validado una solución al PCI cuando el manipulador se corresponde con una ES humana estudiándose 2 posibles alternativas, una basada en la utilización de un Perceptrón Multicapa (PMC) y otra basada en sistemas Artificial Neuro-Fuzzy Inference Systems (ANFIS). La validación, llevada a cabo utilizando información relativa a los modelos disponibles de AVDs, indica que una solución basada en un PMC con 3 neuronas en la capa de entrada, una capa oculta también de 3 neuronas y una capa de salida con tantas neuronas como Grados de Libertad (GdLs) tenga el modelo de la ES, proporciona resultados, tanto de precisión como de tiempo de cálculo, que la hacen idónea para trabajar en sistemas con requisitos de tiempo real 4. Control inteligente assisted-as-needed: se ha diseñado, desarrollado y validado un algoritmo de control assisted-as-needed para una ortesis robótica con capacidades de actuación anticipatoria de la que existe un prototipo implementado en la actualidad. Los resultados obtenidos demuestran cómo el sistema es capaz de adaptarse al perfil disfuncional del paciente activando la ayuda en instantes anteriores a la ocurrencia de movimientos incorrectos. Esta estrategia implica un aumento en la participación del paciente y, por tanto, en su actividad muscular, fomentándose los procesos la plasticidad cerebral responsables del reaprendizaje o readaptación motora 5. Simuladores robóticos para planificación: se propone la utilización de un simulador robótico assisted-as-needed como herramienta de planificación de sesiones de rehabilitación personalizadas y con un objetivo clínico marcado en las que interviene una ortesis robotizada. Los resultados obtenidos evidencian como, tras la ejecución de ciertos algoritmos sencillos, es posible seleccionar automáticamente una configuración para el algoritmo de control assisted-as-needed que consigue que la ortesis se adapte a los criterios establecidos desde un punto de vista clínico en función del paciente estudiado. Estos resultados invitan a profundizar en el desarrollo de algoritmos más avanzados de selección de parámetros a partir de baterías de simulaciones Estos trabajos han servido para corroborar las hipótesis de investigación planteadas al inicio de la misma, permitiendo, asimismo, la apertura de nuevas líneas de investigación. Summary The World Health Organization (WHO) predicts that by the year 2020, Acquired Brain Injury (ABI) will be among the ten most common ailments. These injuries dramatically change the life of the patients and their families due to their physical, sensory, cognitive, emotional and socio-economic consequences. New techniques of early intervention and the development of intensive ABI care have noticeably improved the survival rate. However, in spite of these advances, brain injuries still have no surgical or pharmacological treatment to re-establish the lost functions. Neurorehabilitation therapies address this problem by restoring, minimizing or compensating the functional alterations in a person disabled because of a nervous system injury. One of the main objectives of Neurorehabilitation is to provide patients with the capacity to perform specific Activities of the Daily Life (ADL) required for an independent life, especially those in which the Upper Limb (UL) is directly involved due to its great importance in manipulating objects within the patients' environment. The incorporation of new technological aids to the neurorehabilitation process tries to reach a new paradigm focused on offering a personalized, monitored and ubiquitous practise with continuous assessment of both the efficacy and the efficiency of the procedures and with the capacity of generating new knowledge. New targets will be to minimize the impact of the sicknesses affecting the functional capabilitiies of the subjects, to decrease the time of the physical handicap and to allow a more efficient resources handling. These targets, of a great socio-economic impact, can only be achieved by means of new technologies and algorithms able to provoke the technological break needed to beat the barriers that are stopping the universal penetration of the technology in the field of rehabilitation. In this way, this PhD Thesis has achieved the following results: 1. ADL Modeling: as a previous step to the incorporation of technological aids to the neurorehabilitation process, it is necessary a first modelling and formalization phase of the knowledge associated to the execution of the activities that are performed as a part of the therapy. In particular, the most complex and therapeutically relevant tasks are the ADLs, whose formalization will produce healthy motion models to be used as a reference for future technological developments. Following a methodology based on UML state-chart diagrams, the ADLs 'serving water from a jar' and 'picking up a bottle' have been modelled 2. Ubiquitous monitoring of the UL movement: it has been designed, developed and validated a motion acquisition system based on inertial technology that improves the limitations of the current devices (high monetary cost and inability of working within uncontrolled environments); the high correlation coefficients and the low error levels obtained throughout several co-registration sessions with the commercial sys- tem BTS SMART-D show the high precision of the system. Besides an exploration of a very low cost stereoscopic vision-based motion capture system has been carried out and the key points where it is necessary to insist from a technological point of view have been detected 3. Inverse Kinematics (IK) problem solving: a solution to the IK problem has been proposed for a manipulator that corresponds to a human UL. This solution has been faced by means of two different alternatives, one based on a Mulilayer Perceptron (MLP) and another based on Artificial Neuro-Fuzzy Inference Systems (ANFIS). The validation of these solutions, carried out using the information regarding the previously generated motion models, indicate that a MLP-based solution, with an architecture consisting in 3 neurons in the input layer, one hidden layer of 3 neurons and an output layer with as many neurons as the number of Degrees of Freedom (DoFs) that the UL model has, is the one that provides the best results both in terms of precission and in terms of processing time, making in idoneous to be integrated within a system with real time restrictions 4. Assisted-as-needed intelligent control: an assisted-as-needed control algorithm with anticipatory actuation capabilities has been designed, developed and validated for a robotic orthosis of which there is an already implemented prototype. Obtained results demonstrate that the control system is able to adapt to the dysfunctional profile of the patient by triggering the assistance right before an incorrect movement is going to take place. This strategy implies an increase in the participation of the patients and in his or her muscle activity, encouraging the neural plasticity processes in charge of the motor learning 5. Planification with a robotic simulator: in this work a robotic simulator is proposed as a planification tool for personalized rehabilitation sessions under a certain clinical criterium. Obtained results indicate that, after the execution of simple parameter selection algorithms, it is possible to automatically choose a specific configuration that makes the assisted-as-needed control algorithm to adapt both to the clinical criteria and to the patient. These results invite researchers to work in the development of more complex parameter selection algorithms departing from simulation batteries Obtained results have been useful to corroborate the hypotheses set out at the beginning of this PhD Thesis. Besides, they have allowed the creation of new research lines in all the studied application fields.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Due to recent scientific and technological advances in information sys¬tems, it is now possible to perform almost every application on a mobile device. The need to make sense of such devices more intelligent opens an opportunity to design data mining algorithm that are able to autonomous execute in local devices to provide the device with knowledge. The problem behind autonomous mining deals with the proper configuration of the algorithm to produce the most appropriate results. Contextual information together with resource information of the device have a strong impact on both the feasibility of a particu¬lar execution and on the production of the proper patterns. On the other hand, performance of the algorithm expressed in terms of efficacy and efficiency highly depends on the features of the dataset to be analyzed together with values of the parameters of a particular implementation of an algorithm. However, few existing approaches deal with autonomous configuration of data mining algorithms and in any case they do not deal with contextual or resources information. Both issues are of particular significance, in particular for social net¬works application. In fact, the widespread use of social networks and consequently the amount of information shared have made the need of modeling context in social application a priority. Also the resource consumption has a crucial role in such platforms as the users are using social networks mainly on their mobile devices. This PhD thesis addresses the aforementioned open issues, focusing on i) Analyzing the behavior of algorithms, ii) mapping contextual and resources information to find the most appropriate configuration iii) applying the model for the case of a social recommender. Four main contributions are presented: - The EE-Model: is able to predict the behavior of a data mining algorithm in terms of resource consumed and accuracy of the mining model it will obtain. - The SC-Mapper: maps a situation defined by the context and resource state to a data mining configuration. - SOMAR: is a social activity (event and informal ongoings) recommender for mobile devices. - D-SOMAR: is an evolution of SOMAR which incorporates the configurator in order to provide updated recommendations. Finally, the experimental validation of the proposed contributions using synthetic and real datasets allows us to achieve the objectives and answer the research questions proposed for this dissertation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent decades, there has been an increasing interest in systems comprised of several autonomous mobile robots, and as a result, there has been a substantial amount of development in the eld of Articial Intelligence, especially in Robotics. There are several studies in the literature by some researchers from the scientic community that focus on the creation of intelligent machines and devices capable to imitate the functions and movements of living beings. Multi-Robot Systems (MRS) can often deal with tasks that are dicult, if not impossible, to be accomplished by a single robot. In the context of MRS, one of the main challenges is the need to control, coordinate and synchronize the operation of multiple robots to perform a specic task. This requires the development of new strategies and methods which allow us to obtain the desired system behavior in a formal and concise way. This PhD thesis aims to study the coordination of multi-robot systems, in particular, addresses the problem of the distribution of heterogeneous multi-tasks. The main interest in these systems is to understand how from simple rules inspired by the division of labor in social insects, a group of robots can perform tasks in an organized and coordinated way. We are mainly interested on truly distributed or decentralized solutions in which the robots themselves, autonomously and in an individual manner, select a particular task so that all tasks are optimally distributed. In general, to perform the multi-tasks distribution among a team of robots, they have to synchronize their actions and exchange information. Under this approach we can speak of multi-tasks selection instead of multi-tasks assignment, which means, that the agents or robots select the tasks instead of being assigned a task by a central controller. The key element in these algorithms is the estimation ix of the stimuli and the adaptive update of the thresholds. This means that each robot performs this estimate locally depending on the load or the number of pending tasks to be performed. In addition, it is very interesting the evaluation of the results in function in each approach, comparing the results obtained by the introducing noise in the number of pending loads, with the purpose of simulate the robot's error in estimating the real number of pending tasks. The main contribution of this thesis can be found in the approach based on self-organization and division of labor in social insects. An experimental scenario for the coordination problem among multiple robots, the robustness of the approaches and the generation of dynamic tasks have been presented and discussed. The particular issues studied are: Threshold models: It presents the experiments conducted to test the response threshold model with the objective to analyze the system performance index, for the problem of the distribution of heterogeneous multitasks in multi-robot systems; also has been introduced additive noise in the number of pending loads and has been generated dynamic tasks over time. Learning automata methods: It describes the experiments to test the learning automata-based probabilistic algorithms. The approach was tested to evaluate the system performance index with additive noise and with dynamic tasks generation for the same problem of the distribution of heterogeneous multi-tasks in multi-robot systems. Ant colony optimization: The goal of the experiments presented is to test the ant colony optimization-based deterministic algorithms, to achieve the distribution of heterogeneous multi-tasks in multi-robot systems. In the experiments performed, the system performance index is evaluated by introducing additive noise and dynamic tasks generation over time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

García et al. present a class of column generation (CG) algorithms for nonlinear programs. Its main motivation from a theoretical viewpoint is that under some circumstances, finite convergence can be achieved, in much the same way as for the classic simplicial decomposition method; the main practical motivation is that within the class there are certain nonlinear column generation problems that can accelerate the convergence of a solution approach which generates a sequence of feasible points. This algorithm can, for example, accelerate simplicial decomposition schemes by making the subproblems nonlinear. This paper complements the theoretical study on the asymptotic and finite convergence of these methods given in [1] with an experimental study focused on their computational efficiency. Three types of numerical experiments are conducted. The first group of test problems has been designed to study the parameters involved in these methods. The second group has been designed to investigate the role and the computation of the prolongation of the generated columns to the relative boundary. The last one has been designed to carry out a more complete investigation of the difference in computational efficiency between linear and nonlinear column generation approaches. In order to carry out this investigation, we consider two types of test problems: the first one is the nonlinear, capacitated single-commodity network flow problem of which several large-scale instances with varied degrees of nonlinearity and total capacity are constructed and investigated, and the second one is a combined traffic assignment model