984 resultados para Size distribution


Relevância:

70.00% 70.00%

Publicador:

Resumo:

There is concern that jellyfish populations are proliferating in the Northeast Atlantic and that their socio-economic impacts will increase. Using information from the Irish Groundfish Survey, data are presented on the distribution of the mauve stinger, Pelagia noctiluca, over an area >160 000 km² around Ireland and the UK in 2009. The species accounted for 93% of the overall catch of gelatinous organisms, with an average catch biomass of 0.26 ± 2.3 kg ha−1. The study area was divided into four subregions (North, West, Southwest, and South), and the distribution and abundance of P. noctiluca displayed both inter- and intraregional variations. Individual bell diameters ranged from 1 to 13.5 cm (median 4.5 cm, s.d. 1.2 cm), and the size distribution also varied spatially. It is the first time that such detailed information has been made available for P. noctiluca in a part of the Northeast Atlantic where its impact on the salmon aquaculture industry can be considerable. Finally, the possibility of using annual datasets from this type of fisheries survey to develop time-series that, in the future, will allow investigation of relationships between long-term variations of P. noctiluca populations and climatic factors in the area is addressed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

 B.V. Body size is a fundamental and defining character of an organism, and its variation in space and time is generally considered to be a function of its biology and interactions with its living environment. A great deal of body size related ecological and evolutionary research has been undertaken, mostly in relation to extant animals. Among the many body size-related hypotheses proposed and tested, the size-bathymetry relationship is probably the least studied. In this study, we compiled a global body size dataset of Changhsingian (Late Permian, ca. 254. Ma-252. Ma) brachiopod species from low-latitude areas (30°S-30°N) and analyzed their species diversity and body size distribution patterns in relation to the nearshore-offshore-basin bathymetric gradient. The dataset contained 1768 brachiopod specimens in 435 species referred to 159 genera and 9 orders, from 135 occurrences (localities) of 18 different palaeogeographic regions. Treating the whole of the Changhsingian Stage as a single time slice, we divided the nearshore-offshore-basin bathymetric gradient into three broad depth-related environments: nearshore, offshore and basinal environments, and compared how the species diversity and body size varied along this large-scale bathymetric gradient.Here, we report an array of complex patterns. First, we found a clear overall inverse correlation between species diversity and water depth along the nearshore-offshore-basin gradient, with most species concentrating in the nearshore environment. Second, when the median sizes of all low-latitude brachiopod species from the three environments were compared, we found that there was no significant size difference between the nearshore and offshore environments, suggesting that neither the wave base nor the hydrostatic pressure exerts a critical influence on the body size of brachiopods. On the other hand, the median sizes of brachiopods from the nearshore environment and, to a lesser extent, the offshore environment were found to be significantly larger than that of basinal brachiopods. This trend of significant size reduction in basinal brachiopods mirrors the relative low species diversity in the basinal environment, and neither can be easily explained by the tendency of decreasing food availability towards deeper sea environments. Rather, both trends are consistent with the hypothesis of an expanding Oxygen Minimum Zone (OMZ) in the bathyal (slope to deepsea) environments, where hypoxic to anoxic conditions are considered to have severely restricted the diversification of benthos and favored the relative proliferation of small-sized brachiopods. Finally, a significant difference was also found between eurybathic and stenobathic species in their body size response to the nearshore-offshore-basin gradient, in that eurybathic species (species found in all three environments) did not tend to change their body size significantly according to depth, whereas stenobathic forms (species restricted to a single environment) exhibit a decline in body size towards the basinal environment. This pattern is interpreted to suggest that bathymetrically more tolerant species are less sensitive to depth control with respect to their body size change dynamics, in contrast to stenobathic species which tend to grow larger in shallower water depths.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The influence of environmental conditions on the indoor radon daughters spatial distribution is studied both theoretically and experimentally. Simple theoretical calculations indicate that ventilation and variation in the size distribution of aerosols should play an important role influencing the spatial distribution of indoor radon decay products, but experimental results indicate that these environmental factors have little influence on the spatial distribution of radon daughters near the walls of indoor environments. We have observed that the maximum effective range of the plate-out effect varies only between I and 3 cm in typical dwellings. (C) 2002 Elsevier B.V. Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the tropical Atlantic Forest, 42 canopy gaps had their areas estimated using four different field methods of measurement: Runkle, Brokaw and Green [Runkle, J.R., 1981. Gap formation in some old-growth forests of the eastern United States. Ecology 62, 1041-1051; Brokaw, N.V.L., 1982. The definition of treefall gap and its effect on measures of forest dynamics. Biotropica 14, 158-160; Green, P.T., 1996. Canopy Gaps in rain forest on Christmas Island, Indian Ocean: size distribution and methods of measurement. J. Trop. Ecol. 12, 427-434] and a new method proposed in this work. It was found that within the same gap delimitation, average gap size varied from 56.0 up to 88.3 m(3) while total sum of gap area varied from 2351.3 to 3707.9 m(3) Differences among all methods and between pairs of method proved to be statistically significant. As a consequence, gap size-class distribution was also different between methods. When one method is held as a standard, deviation on average values of gap size ranged between 11.8 and 59.7% as deviations on single gap size can reach 172.8%. Implications on forest dynamics were expressed by the forest turnover rate that was 24% faster or 15% slower depending on the method adopted for gap measurement. Based on my results and on methods' evaluation, the use of a new method is proposed here for future research involving the measure of gap size in forest ecosystems. Finally, it is concluded that forest comparisons disregarding the influence of different methods of gap measurement should be reconsidered. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Direct-sampling and remote-sensing measurements were made at the crater rim of Masaya volcano (Nicaragua) to sample the aerosol plume emanating from the active vent. We report the first measurements of the size distribution of fine silicate particles (d <10 mu m) in Masaya's plume, by automated scanning electron microscopy (QEMSCAN) analysis of a particle filter. The particle size distribution was approximately lognormal with modal d similar to 1.15 mu m. The majority of these particles were found to be spherical. These particles are interpreted to be droplets of quenched magma produced by a spattering process. Compositional analyses confirm earlier reports that the fine silicate particles show a range of compositions between that of the degassing magma and nearly pure silica and that the extent of compositional variability decreases with increasing particle size. These results indicate that fine silicate particles are altered owing to reactions with acidic droplets in the plume. The emission flux of fine silicate particles was estimated as similar to 10(11) s(-1), equivalent to similar to 55 kg d(-1). Sun photometry, aerosol spectrometry, and thermal precipitation were used to determine the overall particle size distribution of the plume (0.01 < d(mu m) < 10). Sun photometry and aerosol spectrometry measurements indicate the presence of a large number of particles (assumed to be aqueous) with d similar to 1 mu m. Aerosol spectrometry measurements further show an increase in particle size as the nighttime approached. The emission flux of particles from Masaya was estimated as similar to 10(17) s(-1), equivalent to similar to 5.5 Mg d(-1) where d < 4 mu m.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Particle size distributions for soluble and insoluble species in Mt. Etna's summit plumes were measured across an extended size range (10 nm < d < 100 mu m) using a combination of techniques. Automated scanning electron microscopy (QEMSCAN) was used to chemically analyze many thousands of insoluble particles (collected on pumped filters) allowing the relationships between particle size, shape, and composition to be investigated. The size distribution of fine silicate particles (d < 10 mu m) was found to be lognormal, consistent with formation by bursting of gas bubbles at the surface of the magma. The compositions of fine silicate particles were found to vary between magmatic and nearly pure silica; this is consistent with depletion of metal ions by reactions in the acidic environment of the gas plume and vent. Measurements of the size, shape and composition of fine silicate particles may potentially offer insights into preemission, synemission, and postemission processes. The mass flux of fine silicate particles from Mt. Etna released during noneruptive volcanic degassing in 2004 and 2005 was estimated to be similar to 7000 kg d(-1). Analysis of particles in the range 0.1 < d/mu m < 100 by ion chromatography shows that there are persistent differences in the size distributions of sulfate aerosols between the two main summit plumes. Analysis of particles in the range 0.01 mu m < d < 0.1 mu m by scanning transmission electron microscopy (STEM) shows that there are significant levels of nanoparticles in the Mt. Etna plumes although their compositions remain uncertain.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Non-crystalline silica was obtained with different particle sizes. Samples were prepared from soluble sodium silicate (water glass) and sulfuric acid solutions. Dialysis was performed for sodium sulfate elimination. Products were dried in a microwave oven, milled and characterized by X-ray powder diffraction, infrared spectrum and sedigraphic analysis. Products milled for more than 120 minutes showed uniform particle size distribution with average silica particle size of 4.5 mu m.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Multifractal analysis is now increasingly used to characterize soil properties as it may provide more information than a single fractal model. During the building of a large reservoir on the Parana River (Brazil), a highly weathered soil profile was excavated to a depth between 5 and 8 m. Excavation resulted in an abandoned area with saprolite materials and, in this area, an experimental field was established to assess the effectiveness of different soil rehabilitation treatments. The experimental design consisted of randomized blocks. The aim of this work was to characterize particle-size distributions of the saprolite material and use the information obtained to assess between-block variability. Particle-size distributions of the experimental plots were characterized by multifractal techniques. Ninety-six soil samples were analyzed routinely for particle-size distribution by laser diffractometry in a range of scales, varying from 0.390 to 2000 mu m. Six different textural classes (USDA) were identified with a clay content ranging from 16.9% to 58.4%. Multifractal models described reasonably well the scaling properties of particle-size distributions of the saprolite material. This material exhibits a high entropy dimension, D-1. Parameters derived from the left side (q > 0) of the f(alpha) spectra, D-1, the correlation dimension (D-2) and the range (alpha(0)-alpha(q+)), as well as the total width of the spectra (alpha(max) - alpha(min)) all showed dependence on the clay content. Sand, silt and clay contents were significantly different among treatments as a consequence of soil intrinsic variability. The D, and the Holder exponent of order zero, alpha(0), were not significantly different between treatments; in contrast, D-2 and several fractal attributes describing the width of the f(alpha) spectra were significantly different between treatments. The only parameter showing significant differences between sampling depths was (alpha(0) - alpha(q+)). Scale independent fractal attributes may be useful for characterizing intrinsic particle-size distribution variability. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Here we describe the application of microparticles (MPs) for the delivery and release of the drug a benzopsoralen. We also evaluated the intracellular distribution and cellular uptake of the drug by using an encapsulation technique for therapeutic optimization. MPs containing the compound 3-ethoxycarbonyl-2H-benzofuro[3,2-f]-1-benzopyran-2-one (psoralen A) were prepared by the solvent evaporation technique, and parameters such as particle size, drug encapsulation efficiency, effect of the encapsulation process on the drug's photochemistry, zeta potential, external morphology, and < i > in vitro release behavior were evaluated. The intracellular distribution of MPs as well as their uptake by tissues were monitored. Size distribution studies using dynamic ligh scattering and scanning electron microscopy revealed that the MPs are spherical in shape with a diameter of 1.4 mu m. They present low tendency toward aggregation, as confirmed by their zeta potential (+10.6 mV). The loading efficiency obtained was 75%. As a consequence of the extremely low diffusivity of the drug in aqueous medium, the drug release profile of the MPs in saline phosphate buffer (pH 7.4) was much slower than that obtained in the biological environment. Among the population of peritoneal phagocytic cells, only macrophages were able to phagocytose poly-d,l-lactic-co-glycolic acid (PLGA) MP. The use of psoralen A in association with ultraviolet light (360 nm) revealed morphological characteristics of cell damage such as cytoplasmic vesiculation, mitochondria condensation, and swelling of both the granular endoplasmatic reticulum and the nuclear membrane. These results indicate that PLGA MP could be a promising delivery system for psoralen in connection with ultraviolet irradiation therapy (PUVA).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper reviews the influence of particle size distribution, agglomerates, rearrangement, sintering atmospheres and impurities on the pore evolution of some commonly studied oxides. These factors largely affect sintering mechanisms due to modifications of diffusion coefficients or evaporation-condensation. Very broad particle size distribution leads to grain growth and agglomerates densify first. Rearrangement of particles due to neck asymmetry mainly in the early stage of sintering is responsible for a high rate of densification in the first minutes of sintering by collapse of large pores. Sintering atmospheres play an important role in both densification and pore evolution. The chemical interaction of water molecules with several oxides like MgO, ZnO and SnO2 largely affects surface diffusion. As a consequence, there is an increase in the rates of pore growth and densification for MgO and ZnO and in the rate of pore growth for SnO2. Carbon dioxide does not affect the rate of sintering of MgO but greatly affects both rates of pore growth and densification of ZnO. Oxygen concentration in the atmosphere can especially affect semiconductor oxides but significantly affects the rate of pore growth of SnO2. Impurities like chlorine ions increase the rate of pore growth in MgO due to evaporation of HCl and Mg(OH)Cl, increasing the rate of densification and particle cuboidization. CuO promotes densification in SnO2, and is more effective in dry air. The rate of densification decrease and pore widening are promoted in argon. An inert atmosphere favors SnO2 evaporation due to reduction of CuO. © 1990.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Patterns of attack for collected species of phorids are predicted using multivariate morphometrics of female Pseudacteon species and worker size distributions of parasitized fire ants, Solenopsis saevissima. The model assumes that there is a direct correlation between phorid size and the size range of the worker ant attacked, and presumes that worker sizes are a resource that is divided by sympatric phorid species to minimize joint parasitism. These results suggest that the community of sympatric Pseudacteon species on only one host species coexists by restricting the size of workers attacked, and secondarily by differing diel patterns of ovipositional activity. When we compared relative abundance of species of Pseudacteon with the size distribution of foragers of S. saevissima, our observed distribution did not differ significantly from our predicted relative abundance of females of Pseudacteon. The activity of Pseudacteon may be a factor determining forager size distributions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Questions: We assess gap size and shape distributions, two important descriptors of the forest disturbance regime, by asking: which statistical model best describes gap size distribution; can simple geometric forms adequately describe gap shape; does gap size or shape vary with forest type, gap age or the method used for gap delimitation; and how similar are the studied forests and other tropical and temperate forests? Location: Southeastern Atlantic Forest, Brazil. Methods: Analysing over 150 gaps in two distinct forest types (seasonal and rain forests), a model selection framework was used to select appropriate probability distributions and functions to describe gap size and gap shape. The first was described using univariate probability distributions, whereas the latter was assessed based on the gap area-perimeter relationship. Comparisons of gap size and shape between sites, as well as size and age classes were then made based on the likelihood of models having different assumptions for the values of their parameters. Results: The log-normal distribution was the best descriptor of gap size distribution, independently of the forest type or gap delimitation method. Because gaps became more irregular as they increased in size, all geometric forms (triangle, rectangle and ellipse) were poor descriptors of gap shape. Only when small and large gaps (> 100 or 400m2 depending on the delimitation method) were treated separately did the rectangle and isosceles triangle become accurate predictors of gap shape. Ellipsoidal shapes were poor descriptors. At both sites, gaps were at least 50% longer than they were wide, a finding with important implications for gap microclimate (e.g. light entrance regime) and, consequently, for gap regeneration. Conclusions: In addition to more appropriate descriptions of gap size and shape, the model selection framework used here efficiently provided a means by which to compare the patterns of two different types of forest. With this framework we were able to recommend the log-normal parameters μ and σ for future comparisons of gap size distribution, and to propose possible mechanisms related to random rates of gap expansion and closure. We also showed that gap shape varied highly and that no single geometric form was able to predict the shape of all gaps, the ellipse in particular should no longer be used as a standard gap shape. © 2012 International Association for Vegetation Science.