938 resultados para Single-molecule detection (SMD)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Much of the chemistry that affects life on planet Earth occurs in the condensed phase. The TeraHertz (THz) or far-infrared (far-IR) region of the electromagnetic spectrum (from 0.1 THz to 10 THz, 3 cm-1 to 300 cm-1, or 3000 μm to 30 μm) has been shown to provide unique possibilities in the study of condensed-phase processes. The goal of this work is to expand the possibilities available in the THz region and undertake new investigations of fundamental interest to chemistry. Since we are fundamentally interested in condensed-phase processes, this thesis focuses on two areas where THz spectroscopy can provide new understanding: astrochemistry and solvation science. To advance these fields, we had to develop new instrumentation that would enable the experiments necessary to answer new questions in either astrochemistry or solvation science. We first developed a new experimental setup capable of studying astrochemical ice analogs in both the TeraHertz (THz), or far-Infrared (far-IR), region (0.3 - 7.5 THz; 10 - 250 cm-1) and the mid-IR (400 - 4000 cm-1). The importance of astrochemical ices lies in their key role in the formation of complex organic molecules, such as amino acids and sugars in space. Thus, the instruments are capable of performing variety of spectroscopic studies that can provide especially relevant laboratory data to support astronomical observations from telescopes such as the Herschel Space Telescope, the Stratospheric Observatory for Infrared Astronomy (SOFIA), and the Atacama Large Millimeter Array (ALMA). The experimental apparatus uses a THz time-domain spectrometer, with a 1750/875 nm plasma source and a GaP detector crystal, to cover the bandwidth mentioned above with ~10 GHz (~0.3 cm-1) resolution.

Using the above instrumentation, experimental spectra of astrochemical ice analogs of water and carbon dioxide in pure, mixed, and layered ices were collected at different temperatures under high vacuum conditions with the goal of investigating the structure of the ice. We tentatively observe a new feature in both amorphous solid water and crystalline water at 33 cm-1 (1 THz). In addition, our studies of mixed and layered ices show how it is possible to identify the location of carbon dioxide as it segregates within the ice by observing its effect on the THz spectrum of water ice. The THz spectra of mixed and layered ices are further analyzed by fitting their spectra features to those of pure amorphous solid water and crystalline water ice to quantify the effects of temperature changes on structure. From the results of this work, it appears that THz spectroscopy is potentially well suited to study thermal transformations within the ice.

To advance the study of liquids with THz spectroscopy, we developed a new ultrafast nonlinear THz spectroscopic technique: heterodyne-detected, ultrafast THz Kerr effect (TKE) spectroscopy. We implemented a heterodyne-detection scheme into a TKE spectrometer that uses a stilbazoiumbased THz emitter, 4-N,N-dimethylamino-4-N-methyl-stilbazolium 2,4,6-trimethylbenzenesulfonate (DSTMS), and high numerical aperture optics which generates THz electric field in excess of 300 kV/cm, in the sample. This allows us to report the first measurement of quantum beats at terahertz (THz) frequencies that result from vibrational coherences initiated by the nonlinear, dipolar interaction of a broadband, high-energy, (sub)picosecond THz pulse with the sample. Our instrument improves on both the frequency coverage, and sensitivity previously reported; it also ensures a backgroundless measurement of the THz Kerr effect in pure liquids. For liquid diiodomethane, we observe a quantum beat at 3.66 THz (122 cm-1), in exact agreement with the fundamental transition frequency of the υ4 vibration of the molecule. This result provides new insight into dipolar vs. Raman selection rules at terahertz frequencies.

To conclude we discuss future directions for the nonlinear THz spectroscopy in the Blake lab. We report the first results from an experiment using a plasma-based THz source for nonlinear spectroscopy that has the potential to enable nonlinear THz spectra with a sub-100 fs temporal resolution, and how the optics involved in the plasma mechanism can enable THz pulse shaping. Finally, we discuss how a single-shot THz detection scheme could improve the acquisition of THz data and how such a scheme could be implemented in the Blake lab. The instruments developed herein will hopefully remain a part of the groups core competencies and serve as building blocks for the next generation of THz instrumentation that pushes the frontiers of both chemistry and the scientific enterprise as a whole.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Detection of biologically relevant targets, including small molecules, proteins, DNA, and RNA, is vital for fundamental research as well as clinical diagnostics. Sensors with biological elements provide a natural foundation for such devices because of the inherent recognition capabilities of biomolecules. Electrochemical DNA platforms are simple, sensitive, and do not require complex target labeling or expensive instrumentation. Sensitivity and specificity are added to DNA electrochemical platforms when the physical properties of DNA are harnessed. The inherent structure of DNA, with its stacked core of aromatic bases, enables DNA to act as a wire via DNA-mediated charge transport (DNA CT). DNA CT is not only robust over long molecular distances of at least 34 nm, but is also especially sensitive to anything that perturbs proper base stacking, including DNA mismatches, lesions, or DNA-binding proteins that distort the π-stack. Electrochemical sensors based on DNA CT have previously been used for single-nucleotide polymorphism detection, hybridization assays, and DNA-binding protein detection. Here, improvements to (i) the structure of DNA monolayers and (ii) the signal amplification with DNA CT platforms for improved sensitivity and detection are described.

First, improvements to the control over DNA monolayer formation are reported through the incorporation of copper-free click chemistry into DNA monolayer assembly. As opposed to conventional film formation involving the self-assembly of thiolated DNA, copper-free click chemistry enables DNA to be tethered to a pre-formed mixed alkylthiol monolayer. The total amount of DNA in the final film is directly related to the amount of azide in the underlying alkylthiol monolayer. DNA monolayers formed with this technique are significantly more homogeneous and lower density, with a larger amount of individual helices exposed to the analyte solution. With these improved monolayers, significantly more sensitive detection of the transcription factor TATA binding protein (TBP) is achieved.

Using low-density DNA monolayers, two-electrode DNA arrays were designed and fabricated to enable the placement of multiple DNA sequences onto a single underlying electrode. To pattern DNA onto the primary electrode surface of these arrays, a copper precatalyst for click chemistry was electrochemically activated at the secondary electrode. The location of the secondary electrode relative to the primary electrode enabled the patterning of up to four sequences of DNA onto a single electrode surface. As opposed to conventional electrochemical readout from the primary, DNA-modified electrode, a secondary microelectrode, coupled with electrocatalytic signal amplification, enables more sensitive detection with spatial resolution on the DNA array electrode surface. Using this two-electrode platform, arrays have been formed that facilitate differentiation between well-matched and mismatched sequences, detection of transcription factors, and sequence-selective DNA hybridization, all with the incorporation of internal controls.

For effective clinical detection, the two working electrode platform was multiplexed to contain two complementary arrays, each with fifteen electrodes. This platform, coupled with low density DNA monolayers and electrocatalysis with readout from a secondary electrode, enabled even more sensitive detection from especially small volumes (4 μL per well). This multiplexed platform has enabled the simultaneous detection of two transcription factors, TBP and CopG, with surface dissociation constants comparable to their solution dissociation constants.

With the sensitivity and selectivity obtained from the multiplexed, two working electrode array, an electrochemical signal-on assay for activity of the human methyltransferase DNMT1 was incorporated. DNMT1 is the most abundant human methyltransferase, and its aberrant methylation has been linked to the development of cancer. However, current methods to monitor methyltransferase activity are either ineffective with crude samples or are impractical to develop for clinical applications due to a reliance on radioactivity. Electrochemical detection of methyltransferase activity, in contrast, circumvents these issues. The signal-on detection assay translates methylation events into electrochemical signals via a methylation-specific restriction enzyme. Using the two working electrode platform combined with this assay, DNMT1 activity from tumor and healthy adjacent tissue lysate were evaluated. Our electrochemical measurements revealed significant differences in methyltransferase activity between tumor tissue and healthy adjacent tissue.

As differential activity was observed between colorectal tumor tissue and healthy adjacent tissue, ten tumor sets were subsequently analyzed for DNMT1 activity both electrochemically and by tritium incorporation. These results were compared to expression levels of DNMT1, measured by qPCR, and total DNMT1 protein content, measured by Western blot. The only trend detected was that hyperactivity was observed in the tumor samples as compared to the healthy adjacent tissue when measured electrochemically. These advances in DNA CT-based platforms have propelled this class of sensors from the purely academic realm into the realm of clinically relevant detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work deals with two related areas: processing of visual information in the central nervous system, and the application of computer systems to research in neurophysiology.

Certain classes of interneurons in the brain and optic lobes of the blowfly Calliphora phaenicia were previously shown to be sensitive to the direction of motion of visual stimuli. These units were identified by visual field, preferred direction of motion, and anatomical location from which recorded. The present work is addressed to the questions: (1) is there interaction between pairs of these units, and (2) if such relationships can be found, what is their nature. To answer these questions, it is essential to record from two or more units simultaneously, and to use more than a single recording electrode if recording points are to be chosen independently. Accordingly, such techniques were developed and are described.

One must also have practical, convenient means for analyzing the large volumes of data so obtained. It is shown that use of an appropriately designed computer system is a profitable approach to this problem. Both hardware and software requirements for a suitable system are discussed and an approach to computer-aided data analysis developed. A description is given of members of a collection of application programs developed for analysis of neuro-physiological data and operated in the environment of and with support from an appropriate computer system. In particular, techniques developed for classification of multiple units recorded on the same electrode are illustrated as are methods for convenient graphical manipulation of data via a computer-driven display.

By means of multiple electrode techniques and the computer-aided data acquisition and analysis system, the path followed by one of the motion detection units was traced from open optic lobe through the brain and into the opposite lobe. It is further shown that this unit and its mirror image in the opposite lobe have a mutually inhibitory relationship. This relationship is investigated. The existence of interaction between other pairs of units is also shown. For pairs of units responding to motion in the same direction, the relationship is of an excitatory nature; for those responding to motion in opposed directions, it is inhibitory.

Experience gained from use of the computer system is discussed and a critical review of the current system is given. The most useful features of the system were found to be the fast response, the ability to go from one analysis technique to another rapidly and conveniently, and the interactive nature of the display system. The shortcomings of the system were problems in real-time use and the programming barrier—the fact that building new analysis techniques requires a high degree of programming knowledge and skill. It is concluded that computer system of the kind discussed will play an increasingly important role in studies of the central nervous system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first chapter of this thesis deals with automating data gathering for single cell microfluidic tests. The programs developed saved significant amounts of time with no loss in accuracy. The technology from this chapter was applied to experiments in both Chapters 4 and 5.

The second chapter describes the use of statistical learning to prognose if an anti-angiogenic drug (Bevacizumab) would successfully treat a glioblastoma multiforme tumor. This was conducted by first measuring protein levels from 92 blood samples using the DNA-encoded antibody library platform. This allowed the measure of 35 different proteins per sample, with comparable sensitivity to ELISA. Two statistical learning models were developed in order to predict whether the treatment would succeed. The first, logistic regression, predicted with 85% accuracy and an AUC of 0.901 using a five protein panel. These five proteins were statistically significant predictors and gave insight into the mechanism behind anti-angiogenic success/failure. The second model, an ensemble model of logistic regression, kNN, and random forest, predicted with a slightly higher accuracy of 87%.

The third chapter details the development of a photocleavable conjugate that multiplexed cell surface detection in microfluidic devices. The method successfully detected streptavidin on coated beads with 92% positive predictive rate. Furthermore, chambers with 0, 1, 2, and 3+ beads were statistically distinguishable. The method was then used to detect CD3 on Jurkat T cells, yielding a positive predictive rate of 49% and false positive rate of 0%.

The fourth chapter talks about the use of measuring T cell polyfunctionality in order to predict whether a patient will succeed an adoptive T cells transfer therapy. In 15 patients, we measured 10 proteins from individual T cells (~300 cells per patient). The polyfunctional strength index was calculated, which was then correlated with the patient's progress free survival (PFS) time. 52 other parameters measured in the single cell test were correlated with the PFS. No statistical correlator has been determined, however, and more data is necessary to reach a conclusion.

Finally, the fifth chapter talks about the interactions between T cells and how that affects their protein secretion. It was observed that T cells in direct contact selectively enhance their protein secretion, in some cases by over 5 fold. This occurred for Granzyme B, Perforin, CCL4, TNFa, and IFNg. IL- 10 was shown to decrease slightly upon contact. This phenomenon held true for T cells from all patients tested (n=8). Using single cell data, the theoretical protein secretion frequency was calculated for two cells and then compared to the observed rate of secretion for both two cells not in contact, and two cells in contact. In over 90% of cases, the theoretical protein secretion rate matched that of two cells not in contact.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Part I

Several approximate Hartree-Fock SCF wavefunctions for the ground electronic state of the water molecule have been obtained using an increasing number of multicenter s, p, and d Slater-type atomic orbitals as basis sets. The predicted charge distribution has been extensively tested at each stage by calculating the electric dipole moment, molecular quadrupole moment, diamagnetic shielding, Hellmann-Feynman forces, and electric field gradients at both the hydrogen and the oxygen nuclei. It was found that a carefully optimized minimal basis set suffices to describe the electronic charge distribution adequately except in the vicinity of the oxygen nucleus. Our calculations indicate, for example, that the correct prediction of the field gradient at this nucleus requires a more flexible linear combination of p-orbitals centered on this nucleus than that in the minimal basis set. Theoretical values for the molecular octopole moment components are also reported.

Part II

The perturbation-variational theory of R. M. Pitzer for nuclear spin-spin coupling constants is applied to the HD molecule. The zero-order molecular orbital is described in terms of a single 1s Slater-type basis function centered on each nucleus. The first-order molecular orbital is expressed in terms of these two functions plus one singular basis function each of the types e-r/r and e-r ln r centered on one of the nuclei. The new kinds of molecular integrals were evaluated to high accuracy using numerical and analytical means. The value of the HD spin-spin coupling constant calculated with this near-minimal set of basis functions is JHD = +96.6 cps. This represents an improvement over the previous calculated value of +120 cps obtained without using the logarithmic basis function but is still considerably off in magnitude compared with the experimental measurement of JHD = +43 0 ± 0.5 cps.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a simple and practical method for the single-ended distributed fiber temperature measurements using microwave (11-GHz) coherent detection and the instantaneous frequency measurement (IFM) technique to detect spontaneous Brillouin backscattered signal in which a specially designed rf bandpass filter at 11 GHz is used as a frequency discriminator to transform frequency shift to intensity fluctuation. A Brillouin temperature signal can be obtained at 11 GHz over a sensing length of 10 km. The power sensitivity dependence on temperature induced by frequency shift is measured as 2.66%/K. (c) 2007 Society of Photo-Optical Instrumentation Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

abstract {We present a simple and practical method for the single-ended distributed fiber temperature measurements using microwave (11-GHz) coherent detection and the instantaneous frequency measurement (IFM) technique to detect spontaneous Brillouin backscattered signal in which a specially designed rf bandpass filter at 11 GHz is used as a frequency discriminator to transform frequency shift to intensity fluctuation. A Brillouin temperature signal can be obtained at 11 GHz over a sensing length of 10 km. The power sensitivity dependence on temperature induced by frequency shift is measured as 2.66%/K. © 2007 Society of Photo-Optical Instrumentation Engineers.}

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A diode pumped injection seeded single-longitudinal-mode (SLM) Nd:YAG laser is achieved by using the resonance-detection technique in Q-switching operation. The pulsed oscillator laser uses a folded cavity to achieve compact construction. This system operates at 100 Hz and provides over 20 mJ/pulse of single-frequency 1064 nm output. The M-2 values of horizontal and vertical axes are 1.58 and 1.41, respectively. The probability of putting out single-longitudinal-mode pulses is 100%. The 355 nm laser output produced by frequency tripling has a linewidth less than 200 MHz. The laser can run over eight hours continually without mode hopping.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antibody orientation and its antigen binding efficiency at interface are of particular interest in many immunoassays and biosensor applications. In this paper, spectroscopic ellipsometry (SE), neutron reflection (NR), and dual polarization interferometry (DPI) have been used to investigate interfacial assembly of the antibody [mouse monoclonal anti-human prostate-specific antigen (anti-hPSA)] at the silicon oxide/water interface and subsequent antigen binding. It was found that the mass density of antibody adsorbed at the interface increased with solution concentration and adsorption time while the antigen binding efficiency showed a steady decline with increasing antibody amount at the interface over the concentration range studied. The amount of antigen bound to the interfacial immobilized antibody reached a maximum when the surface-adsorbed amount of antibody was around 1.5 mg/m(2). This phenomenon is well interpreted by the interfacial structural packing or crowding. NR revealed that the Y-shaped antibody laid flat on the interface at low surface mass density with a thickness around 40 Å, equivalent to the short axial length of the antibody molecule. The loose packing of the antibody within this range resulted in better antigen binding efficiency, while the subsequent increase of surface-adsorbed amount led to the crowding or overlapping of antibody fragments, hence reducing the antigen binding due to the steric hindrance. In situ studies of antigen binding by both NR and DPI demonstrated that the antigen inserted into the antibody layer rather than forming an additional layer on the top. Stability assaying revealed that the antibody immobilized at the silica surface remained stable and active over the monitoring period of 4 months. These results are useful in forming a general understanding of antibody interfacial behavior and particularly relevant to the control of their activity and stability in biosensor development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Porphyrin metabolic disruption from exposure to xenobiotic contaminants such as heavy metals, dioxins, and aromatic hydrocarbons can elicit overproduction of porphyrins. Measurement of porphyrin levels, when used in conjunction with other diagnostic assays, can help elucidate an organism’s physiological condition and provide evidence for exposure to certain toxicants. A sensitive microplate fluorometric assay has been optimized for detecting total porphyrin levels in detergent solubilized protein extracts from symbiotic, dinoflagellate containing cnidarian tissues. The denaturing buffer used in this modified assay contains a number of potentially interfering components (e.g., sodium dodecyl sulfate (SDS), dithiothreitol (DTT), protease inhibitors, and chlorophyll from the symbiotic zooxanthellae), which required examination and validation. Examination of buffer components were validated for use in this porphyrin assay; while the use of a specific spectrofluorometric filter (excitation 400 ± 15 nm; emission 600 ± 20 nm) minimized chlorophyll interference. The detection limit for this assay is 10 fmol of total porphyrin per μg of total soluble protein and linearity is maintained up to 5000 fmol. The ability to measure total porphyrins in a SDS protein extract now allows a single extract to be used in multiple assays. This is an advantage over classical methods, particularly when tissue samples are limiting, as is often the case with coral due to availability and collection permit restrictions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here we present a novel signal processing technique for a square wave thermally-modulated carbon black/polymer composite chemoresistor. The technique consists of only two mathematical operations: summing the off-transient and on-transient conductance signals; and subtracting the steady-state conductance signal. A single carbon black/polyvinylpyrrolidone composite chemo -resistor was fabricated and used to demonstrate the validity of the technique. Classification of water, methanol and ethanol vapours was successfully performed using only the peak time of the resultant curves. Quantification of the different vapours was also possible using the height of the peaks, because it was linearly proportional to concentration. This technique does not require zero-gas calibration and thus is superior to previously reported methods. ©2009 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Latex beads were sensitized with monoclonal antibodies (MAb) rose against VP28 of WSSV. The optimum concentration of MAb required to sensitize the latex beads was 125 µg/ml. The sensitized latex beads were used to detect WSSV from PCR-positive stomach tissue homogenates obtained from infected shrimp. Stomach tissue homogenates from WSSV-infected shrimp agglutinated the sensitized latex beads within 10 minutes, while uninfected samples did not produce any agglutination, although non-specific agglutinations were observed in some samples. The analytical sensitivity, analytical specificity, diagnostic sensitivity and diagnostic specificity of the (LAT) agglutination test were assessed. The analytical sensitivity of the test was 40 ng of purified WSSV (2 µg/ml). The sensitized latex beads did not agglutinate with normal shrimp tissue or MBV-infected tissue homogenate. The test has a diagnostic sensitivity of 70 and 45%, respectively, compared to single-step and nested PCR. The diagnostic specificity of the test was 82%. This test is a simple and rapid on-farm test which can be used to corroborate clinical signs for the detection of WSSV in grow-out ponds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

P>The non-classical major histocompatibility complex (MHC) class I molecule CD1d presents lipid antigens to invariant natural killer T (iNKT) cells, which are an important part of the innate immune system. CD1d/iNKT systems are highly conserved in evoluti

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A measurement system for magnetic fields and electric currents uses a single-core fluxgate device driven with a radio frequency excitation source and is provided with a means to indicate saturation of the core of the sensor. A means is provided for detecting overload of the sensor as the core approaches continuous saturation using a pair of demodulators and a comparator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are over 600,000 bridges in the US, and not all of them can be inspected and maintained within the specified time frame. This is because manually inspecting bridges is a time-consuming and costly task, and some state Departments of Transportation (DOT) cannot afford the essential costs and manpower. In this paper, a novel method that can detect large-scale bridge concrete columns is proposed for the purpose of eventually creating an automated bridge condition assessment system. The method employs image stitching techniques (feature detection and matching, image affine transformation and blending) to combine images containing different segments of one column into a single image. Following that, bridge columns are detected by locating their boundaries and classifying the material within each boundary in the stitched image. Preliminary test results of 114 concrete bridge columns stitched from 373 close-up, partial images of the columns indicate that the method can correctly detect 89.7% of these elements, and thus, the viability of the application of this research.