948 resultados para Single Equation Models
Resumo:
In this work we study two different spin-boson models. Such models are generalizations of the Dicke model, it means they describe systems of N identical two-level atoms coupled to a single-mode quantized bosonic field, assuming the rotating wave approximation. In the first model, we consider the wavelength of the bosonic field to be of the order of the linear dimension of the material composed of the atoms, therefore we consider the spatial sinusoidal form of the bosonic field. The second model is the Thompson model, where we consider the presence of phonons in the material composed of the atoms. We study finite temperature properties of the models using the path integral approach and functional methods. In the thermodynamic limit, N→∞, the systems exhibit phase transitions from normal to superradiant phase at some critical values of temperature and coupling constant. We find the asymptotic behavior of the partition functions and the collective spectrums of the systems in the normal and the superradiant phases. We observe that the collective spectrums have zero energy values in the superradiant phases, corresponding to the Goldstone mode associated to the continuous symmetry breaking of the models. Our analysis and results are valid in the limit of zero temperature β→∞, where the models exhibit quantum phase transitions. © 2013 Elsevier B.V. All rights reserved.
Resumo:
In this study, genetic parameters for test-day milk, fat, and protein yield were estimated for the first lactation. The data analyzed consisted of 1,433 first lactations of Murrah buffaloes, daughters of 113 sires from 12 herds in the state of São Paulo, Brazil, with calvings from 1985 to 2007. Ten-month classes of lactation days were considered for the test-day yields. The (co)variance components for the 3 traits were estimated using the regression analyses by Bayesian inference applying an animal model by Gibbs sampling. The contemporary groups were defined as herd-year-month of the test day. In the model, the random effects were additive genetic, permanent environment, and residual. The fixed effects were contemporary group and number of milkings (1 or 2), the linear and quadratic effects of the covariable age of the buffalo at calving, as well as the mean lactation curve of the population, which was modeled by orthogonal Legendre polynomials of fourth order. The random effects for the traits studied were modeled by Legendre polynomials of third and fourth order for additive genetic and permanent environment, respectively, the residual variances were modeled considering 4 residual classes. The heritability estimates for the traits were moderate (from 0.21-0.38), with higher estimates in the intermediate lactation phase. The genetic correlation estimates within and among the traits varied from 0.05 to 0.99. The results indicate that the selection for any trait test day will result in an indirect genetic gain for milk, fat, and protein yield in all periods of the lactation curve. The accuracy associated with estimated breeding values obtained using multi-trait random regression was slightly higher (around 8%) compared with single-trait random regression. This difference may be because to the greater amount of information available per animal. © 2013 American Dairy Science Association.
Resumo:
Pós-graduação em Física - IFT
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Este trabalho consiste na solução híbrida da Equação de Advecção-dispersão de solutos unidimensional em meios porosos homogêneos ou heterogêneos, para um único componente, com coeficientes de retardo, dispersão, velocidade média, decaimento e produção dependentes da distância percorrida pelo soluto. Serão estudados os casos de dispersão-advecção em que o retardamento, dispersão, velocidade do fluxo, decaimento e produção variem de forma linear enquanto a dispersividade assuma os modelos linear, parabólico ou exponencial. Para a solução da equação foi aplicada a Técnica da Transformada Integral Generalizada. Os resultados obtidos nesta dissertação demonstram boa concordância entre os problemas-exemplo e suas soluções numéricas ou analíticas contidas na literatura e apontam uma melhor adequação no uso de modelos parabólico no estudo da advecção-dispersão em curto intervalo de tempo, enquanto que o modelo linear converge mais rapidamente em tempos prolongados de simulação. A convergência da série mostrou-se ter dependência direta quanto ao comprimento do domínio, ao modelo de dispersão e da dispersividade adotada, convergindo com até 60 termos, podendo chegar a NT = 170, para os casos heterogêneos, utilizando o modelo de dispersão exponencial, respeitando o critério adotado de 10-4.
Resumo:
Neste trabalho investigamos soluções solitônicas em modelos de Kaluza-Klein com um número arbitrário de espaços internos toroidais, que descrevem o campo gravitacional de um objeto massivo compacto. Cada toro di-dimensional possui um fator de escala independente Ci, i = 1, ..., N, que é caracterizado pelo parâmetro ᵞi. Destacamos a solução fisicamente interessante correspondente à massa puntual. Para a solução geral obtemos equações de estado nos espaços externo e interno. Estas equações demonstram que a massa pontual solitônica possui equações de estado tipo poeira em todos os espaços. Obtemos também os parâmetros pósnewtonianos que nos possibilitam encontrar as fórmulas da precessão do periélio, do desvio da luz e do atraso no tempo de ecos de radar. Além disso, os experimentos gravitacionais levam a uma forte limitação nos parâmetros do modelo: T = ƩNi=1 diYi = −(2, 1±2, 3)×10−5. A solução para massa pontual com Y1 = . . . = YN = (1+ƩNi=1 di)−1 contradiz esta restrição. A imposição T = 0 satisfaz essa limitação experimental e define uma nova classe de soluções que são indistinguíveis para a relatividade geral. Chamamos estas soluções de sólitons latentes. Cordas negras e membranas negras com Yi = 0 pertencem a esta classe. Além disso, a condição de estabilidade dos espaços internos destaca cordas/membranas negras de sólitons latentes, conduzindo exclusivamente para as equações de estado de corda/membrana negra pi = −ε/2, i = 1, . . . ,N, nos espaços internos e ao número de dimensões externas d0 = 3. As investigações do fluido perfeito multidimensional estático e esfericamente simétrico com equação de estado tipo poeira no espaço externo confirmam os resultados acima.
Resumo:
No presente trabalho de tese é apresentada uma nova técnica de empilhamento de dados sísmicos para a obtenção da seção de incidência normal ou afastamento fonte-receptor nulo, aplicável em meios bidimensionais com variações laterais de velocidade. Esta nova técnica denominada Empilhamento Sísmico pela Composição de Ondas Planas (empilhamento PWC) foi desenvolvida tomando como base os conceitos físicos e matemáticos da decomposição do campo de ondas em ondas planas. Este trabalho pode ser dividido em três partes: Uma primeira parte, onde se apresenta uma revisão da técnica de empilhamento sísmico convencional e do processo de decomposição do campo de ondas produzido a partir de fontes pontuais em suas correspondentes ondas planas. Na segunda parte, é apresentada a formulação matemática e o procedimento de aplicação do método de empilhamento sísmico pela composição de ondas planas. Na terceira parte se apresenta a aplicação desta nova técnica de empilhamento na serie de dados Marmousi e uma analise sobre a atenuação de ruído. A formulação matemática desta nova técnica de empilhamento sísmico foi desenvolvida com base na teoria do espalhamento aplicado a ondas sísmicas sob a restrição do modelo de aproximação de Born. Nesse sentido, inicialmente se apresenta a determinação da solução da equação de onda caustica para a configuração com afastamento fonte-receptor finito, que posteriormente é reduzido para a configuração de afastamento fonte-receptor nulo. Por outra parte, com base nessas soluções, a expressão matemática deste novo processo de empilhamento sísmico é resolvida dentro do contexto do modelo de aproximação de Born. Verificou-se que as soluções encontradas por ambos procedimentos, isto é, por meio da solução da equação da onda e pelo processo de empilhamento proposto, são iguais, mostrando-se assim que o processo de empilhamento pela composição de ondas planas produz uma seção com afastamento fonte-receptor nulo. Esta nova técnica de empilhamento basicamente consiste na aplicação de uma dupla decomposição do campo de ondas em onda planas por meio da aplicação de dois empilhamentos oblíquos (slant stack), isto é um ao longo do arranjo das fontes e outro ao longo do arranjo dos detectores; seguido pelo processo de composição das ondas planas por meio do empilhamento obliquo inverso. Portanto, com base nestas operações e com a ajuda de um exemplo de aplicação nos dados gerados a partir de um modelo simples, são descritos os fundamentos e o procedimento de aplicação (ou algoritmo) desta nova técnica de obtenção da seção de afastamento nulo. Como exemplo de aplicação do empilhamento PWC em dados correspondentes a um meio com variações laterais de velocidade, foi aplicado nos dados Marmousi gerados segundo a técnica de cobertura múltipla a partir de um modelo que representa uma situação geológica real. Por comparação da seção resultante com a similar produzida pelo método de empilhamento convencional, observa-se que a seção de afastamento nulo desta nova técnica apresenta melhor definição e continuidade dos reflectores, como também uma melhor caracterização da ocorrência de difrações. Por último, da atenuação de ruído aleatório realizada nos mesmos dados, observa-se que esta técnica de empilhamento também produz uma atenuação do ruído presente no sinal, a qual implica um aumento na relação sinal ruído.
Resumo:
Pós-graduação em Agronomia (Irrigação e Drenagem) - FCA
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We extend the Miles mechanism of wind-wave generation to finite depth. A beta-Miles linear growth rate depending on the depth and wind velocity is derived and allows the study of linear growth rates of surface waves from weak to moderate winds in finite depth h. The evolution of beta is plotted, for several values of the dispersion parameter kh with k the wave number. For constant depths we find that no matter what the values of wind velocities are, at small enough wave age the beta-Miles linear growth rates are in the known deep-water limit. However winds of moderate intensities prevent the waves from growing beyond a critical wave age, which is also constrained by the water depth and is less than the wave age limit of deep water. Depending on wave age and wind velocity, the Jeffreys and Miles mechanisms are compared to determine which of them dominates. A wind-forced nonlinear Schrodinger equation is derived and the Akhmediev, Peregrine and Kuznetsov-Ma breather solutions for weak wind inputs in finite depth h are obtained.
Resumo:
Given the importance of Guzera breeding programs for milk production in the tropics, the objective of this study was to compare alternative random regression models for estimation of genetic parameters and prediction of breeding values. Test-day milk yields records (TDR) were collected monthly, in a maximum of 10 measurements. The database included 20,524 records of first lactation from 2816 Guzera cows. TDR data were analyzed by random regression models (RRM) considering additive genetic, permanent environmental and residual effects as random and the effects of contemporary group (CG), calving age as a covariate (linear and quadratic effects) and mean lactation curve as fixed. The genetic additive and permanent environmental effects were modeled by RRM using Wilmink, All and Schaeffer and cubic B-spline functions as well as Legendre polynomials. Residual variances were considered as heterogeneous classes, grouped differently according to the model used. Multi-trait analysis using finite-dimensional models (FDM) for testday milk records (TDR) and a single-trait model for 305-days milk yields (default) using the restricted maximum likelihood method were also carried out as further comparisons. Through the statistical criteria adopted, the best RRM was the one that used the cubic B-spline function with five random regression coefficients for the genetic additive and permanent environmental effects. However, the models using the Ali and Schaeffer function or Legendre polynomials with second and fifth order for, respectively, the additive genetic and permanent environmental effects can be adopted, as little variation was observed in the genetic parameter estimates compared to those estimated by models using the B-spline function. Therefore, due to the lower complexity in the (co)variance estimations, the model using Legendre polynomials represented the best option for the genetic evaluation of the Guzera lactation records. An increase of 3.6% in the accuracy of the estimated breeding values was verified when using RRM. The ranks of animals were very close whatever the RRM for the data set used to predict breeding values. Considering P305, results indicated only small to medium difference in the animals' ranking based on breeding values predicted by the conventional model or by RRM. Therefore, the sum of all the RRM-predicted breeding values along the lactation period (RRM305) can be used as a selection criterion for 305-day milk production. (c) 2014 Elsevier B.V. All rights reserved.