991 resultados para Serum-proteins
Resumo:
Although ATM, the protein defective in ataxia-telangiectasia (A-T), is activated primarily by radiation, there is also evidence that expression of the protein can be regulated by both radiation and growth factors. Computer analysis of the ATM promoter proximal 700-bp sequence reveals a number of potentially important cis-regulatory sequences. Using nucleotide substitutions to delete putative functional elements in the promoter of ATM, we examined the importance of some of these sites for both the basal and the radiation-induced activity of the promoter. In lymphoblastoid cells, most of the mutations in transcription factor consensus sequences [Sp1(1), Sp1(2), Cre, Ets, Xre, gammaIre(2), a modified AP1 site (Fse), and GCF] reduced basal activity to various extents, whereas others [gammaIre(1), NF1, Myb] left basal activity unaffected. In human skin fibroblasts, results were generally the same, but the basal activity varied up to 8-fold in these and other cell lines. Radiation activated the promoter approximately 2.5-fold in serum-starved lymphoblastoid cells, reaching a maximum by 3 hr, and all mutated elements equally blocked this activation. Reduction in Sp1 and AP1 DNA binding activity by serum starvation was rapidly reversed by exposure of cells to radiation. This reduction was not evident in A-T cells, and the response to radiation was less marked. Data provided for interaction between ATM and Sp1 by protein binding and co-immunoprecipitation could explain the altered regulation of Sp1 in A-T cells. The data described here provide additional evidence that basal and radiation-induced regulation of the ATM promoter is under multifactorial control. (C) 2003 Wiley-Liss, Inc.
Resumo:
The GRIP domain is a targeting sequence found in a family of coiled-coil peripheral Golgi proteins. Previously we demonstrated that the GRIP domain of p230/golgin245 is specifically recruited to tubulovesicular structures of the traps-Golgi network (TGN). Here we have characterized two novel Golgi proteins with functional GRIP domains, designated GCC88 and GCC185. GCC88 cDNA encodes a protein of 88 kDa, and GCC185 cDNA encodes a protein of 185 kDa. Both molecules are brefeldin A-sensitive peripheral membrane proteins and are predicted to have extensive coiled-coil regions with the GRIP domain at the C terminus. By immunofluorescence and immunoelectron microscopy GCC88 and GCC185, and the GRIP protein golgin97, are all localized to the TGN of Hela cells. Overexpression of full-length GCC88 leads to the formation of large electron dense structures that extend from the traps-Golgi. These de novo structures contain GCC88 and co-stain for the TGN markers syntaxin 6 and TGN38 but not for alpha2,6-sialyltransferase, beta-COP, or cis-Golgi GM130. The formation of these abnormal structures requires the N-terminal domain of GCC88. TGN38, which recycles between the TGN and plasma membrane, was transported into and out of the GCC88 decorated structures. These data introduce two new GRIP domain proteins and implicate a role for GCC88 in the organization of a specific TGN subcompartment involved with membrane transport.
Resumo:
The pathogenesis-related (PR) protein superfamily is widely distributed in the animal, plant, and fungal kingdoms and is implicated in human brain tumor growth and plant pathogenesis. The precise biological activity of PR proteins, however, has remained elusive. Here we report the characterization, cloning and structural homology modeling of Tex31 from the venom duct of Conus textile. Tex31 was isolated to >95% purity by activity-guided fractionation using a para-nitroanilide substrate based on the putative cleavage site residues found in the propeptide precursor of conotoxin TxVIA. Tex31 requires four residues including a leucine N-terminal of the cleavage site for efficient substrate processing. The sequence of Tex31 was determined using two degenerate PCR primers designed from N-terminal and tryptic digest Edman sequences. A BLAST search revealed that Tex31 was a member of the PR protein superfamily and most closely related to the CRISP family of mammalian proteins that have a cysteine-rich C-terminal tail. A homology model constructed from two PR proteins revealed that the likely catalytic residues in Tex31 fall within a structurally conserved domain found in PR proteins. Thus, it is possible that other PR proteins may also be substrate-specific proteases.
Resumo:
Objective To compare the effects of transferring from low-dose transdermal estrogen to raloxifene (RLX), with a phase of alternate-day RLX therapy with or without low-dose transdermal estrogen, on serum lipids and fibrinogen in postmenopausal women previously administered estrogen plus progestogen therapy. Methods Sixty postmenopausal women (mean age 55 years) were randomized to one of two treatment groups: RLX + low-dose transdermal estrogen (RLX + E) or RLX + placebo. The study consisted of four 8-week phases: phase I (all subjects low-dose transdermal estrogen 25 mug/day), phase II (double-blind RLX 60 mg every 2nd day in combination with either low-dose transdermal estrogen or placebo), phase III (all subjects RLX 60 mg every 2nd day + placebo) and phase IV (all subjects RLX 60 mg/day + placebo). Results No significant differences existed between groups for baseline measurements prior to phase I. In phase I, for all subjects combined, total cholesterol and low-density lipoprotem cholesterol both showed a significant increase (median increase of 0.2 mmol/l, p = 0.008 and 0.4 mmol/l, p < 0.001, respectively), while triglycerides decreased significantly (median decrease of 0.2 mmol/l, p < 0.001). For the primary analysis (phase II to phase IV), the mean change from baseline observations showed no significant differences between the therapy groups for serum lipids, fibrinogen, vital signs or weight. In the comparison phase (phase II), changes in serum lipids, fibrinogen, vital signs and weight were not significantly different between groups. Conclusion Gradual conversion to RLX from low-dose transdermal estrogen, with a phase of alternate-day RLX therapy with or without low-dose transdermal estrogen, does not have any effect on the serum lipid profile or fibrinogen level.
Resumo:
X-ray reflectivity of bovine and sheep surfactant-associated protein B (SP-B) monolayers is used in conjunction with pressure-area isotherms and protein models to suggest that the protein undergoes changes in its tertiary structure at the air/water interface under the influence of surface pressure, indicating the likely importance of such changes to the phenomena of protein squeeze out as well as lipid exchange between the air-water interface and subphase structures. We describe an algorithm based on the well-established box- or layer-models that greatly assists the fitting of such unknown scattering-length density profiles, and which takes the available instrumental resolution into account. Scattering-length density profiles from neutron reflectivity of bovine SP-B monolayers on aqueous subphases are shown to be consistent with the exchange of a large number of labile protons as well as the inclusion of a significant amount of water, which is partly squeezed out of the protein monolayer at elevated surface pressures.
Resumo:
Until recently, glycosylation of proteins in prokaryotes was regarded as uncommon and thought to be limited to special cases such as S-layer proteins and some archeal outer membrane proteins. Now, there are an increasing number of reports of bacterial proteins that are glycosylated. Pilin of pathogenic Neisseria is one of the best characterised post-translation ally modified bacterial proteins, with four different types of modifications reported, including a novel glycosylation. Pilin monomers assemble to form pilus fibres, which are long protein filaments that protrude from the surface of bacterial cells and are key virulence factors. To aid in the investigation of these modifications, pure pilin is required. A number of pilin purification methods have been published, but none are appropriate for the routine purification of pilin from many different isolates. This study describes a novel, rapid, and simple method of pilin purification from Neisseria meningitidis C311#3, which facilitates the production of consistent quantities of pure, native pilin. A 6 x histidine tag was fused to the C-terminus of the pilin subunit structural gene, pilE, via homologous recombination placing the 6 x histidine-tagged allele in the chromosome of N. meningitidis C311#3. Pilin was purified under non-denaturing conditions via a two-step process using immobilised metal affinity chromatography (IMAC), followed by dye affinity chromatography. Analysis of the purified pilin confirmed that it retained both of the post-translational modifications examined. This novel approach may prove to be a generally applicable method for purification and analysis of post-translationally modified proteins in bacteria. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
In this paper we present results on the optimization of multilayered a-SiC:H heterostructures that can be used as optical transducers for fluorescent proteins detection using the Fluorescence Resonance Energy Transfer approach. Double structures composed by pin based aSiC:H cells are analyzed. The color discrimination is achieved by ac photocurrent measurement under different externally applied bias. Experimental data on spectral response analysis, current-voltage characteristics and color and transmission rate discrimination are reported. An electrical model, supported by a numerical simulation gives insight into the device operation. Results show that the optimized a-SiC:H heterostructures act as voltage controlled optical filters in the visible spectrum. When the applied voltages are chosen appropriately those optical transducers can detect not only the selective excitation of specimen fluorophores, but also the subsequent weak acceptor fluorescent channel emission.
Resumo:
Cryptosporidium sp., a coccidian parasite usually found in the faeces of cattle, has been recently implicated as an agent of human intestinal disease, mainly in immunocompromised patients. In the study realized, by an indirect immunofluorescence technique, specific immunoglobulins (IgG and IgM) have been demonstrated in human serum against Cryptosporidium oocysts. Purified oocysts were used as antigens in the indirect immunofluorecence assay. After analyzing this test in sera from selected groups of patients, the frequency of both specific IgG and IgM of immunocompetent children who were excreting oocysts in their faeces was 62% and in children with negative excretion of oocysts was 20% and 40%, respectively. In adults infected with the human immunodeficiency virus (HIV) and who were excreting Cryptosporidium in their stools, the frequency was 57% for IgG but only 2% for IgM. Twenty three percent of immunocompromised adults with not determined excretion of oocysts in their stools had anti-Cryptosporidium IgG in their sera. Children infected with human immunodeficiency virus had no IgM and only 14% had IgG detectable in their sera. The indirect immunoflorescence assay, when used with other parasitological techniques appears to be useful for retrospective population studies and for diagnosis of acute infection. The humoral immune response of HIV positive patients to this protozoan agent needs clarification.
Resumo:
We carry out systematic Monte Carlo simulations of Go lattice proteins to investigate and compare the folding processes of two model proteins whose native structures differ from each other due to the presence of a trefoil knot located near the terminus of one of the protein chains. We show that the folding time of the knotted fold is larger than that of the unknotted protein and that this difference in folding time is particularly striking in the temperature region below the optimal folding temperature. Both proteins display similar folding transition temperatures, which is indicative of similar thermal stabilities. By using the folding probability reaction coordinate as an estimator of folding progression we have found out that the formation of the knot is mainly a late folding event in our shallow knot system.
Resumo:
OBJECTIVE: To identify the association between food group consumption frequency and serum lipoprotein levels among adults. METHODS: The observations were made during a cross-sectional survey of a representative sample of men and women over 20 years old living in Cotia county, S. Paulo, Brazil. Data on food frequency consumption, serum lipids, and other covariates were available for 1,045 adults. Multivariate analyses adjusted by age, gender, body mass index, waist-to-hip ratio, educational level, family income, physical activity, smoking, and alcohol consumption were performed. RESULTS: Consumption of processed meat, chicken, red meat, eggs and dairy foods were each positively and significantly correlated with LDL-C, whereas the intake of vegetables and fruits showed an inverse correlation. Daily consumption of processed meat, chicken, red meat, eggs, and dairy foods were associated with 16.6 mg/dl, 14.5 mg/dl, 11.1 mg/dl, 5.8 mg/dl, and 4.6 mg/dl increase in blood LDL-C, respectively. Increases of daily consumption of fruit and vegetables were associated with 5.2 mg/dl and 5.5 mg/dl decreases in LDL-C, respectively. Alcohol beverage consumption showed a significant positive correlation with HDL-C. CONCLUSIONS: Dietary habits in the study population seem to contribute substantially to the variation in blood LDL and HDL concentrations. Substantially CHD risk reduction could be achieved with dietary changes.
Resumo:
OBJETIVES: To detect anti-Giardia lamblia serum antibodies in healthy children attending public day care centers and to assess serological tests as tools for estimating the prevalence of G. lamblia in endemic areas. METHODS: Three separate stool specimens and filter paper blood samples were collected from 147 children ranging from 0 to 6 years old. Each stool sample was processed using spontaneous sedimentation and zinc sulfate flotation methods. Blood samples were tested by indirect immunofluorescence (IIF) and enzyme-linked immunosorbent assay (ELISA) for Giardia IgG. RESULTS AND CONCLUSIONS: Of 147 individuals tested, 93 (63.3%) showed Giardia cysts in their feces. Using IIF and ELISA, serum antibodies were detected in 93 (63.3%) and 100 (68%) samples , respectively. Sensitivity of IIF and ELISA was 82% and 72%, respectively. However, ELISA revealed to be less specific (39%) than IIF (70%). IIF also showed a higher concordance with microscopic examination than ELISA.
Resumo:
O ferro é encontrado em praticamente todos os seres vivos, sendo um cofator para proteínas que desempenham funções essenciais à vida. Nos mamíferos, a maioria do ferro está incorporada na hemoglobina ou armazenado no fígado, ligado à ferritina. É absorvido pelos enterócitos, sendo a principal forma de controlo dos seus níveis. A sobrecarga de ferro pode levar a hemocromatose, podendo ser tóxica para vários órgãos. O fator de transcrição Nrf2 é importante na ativação de genes citoprotetores em situações de stress oxidativo/eletrofílico, colocando-se a hipótese de que poderá estar envolvido na resposta à progressão de doença devido à sobrecarga de ferro. Com o objetivo de determinar se a via do Nrf2 representa uma proteção contra a toxicidade do ferro a nível hepático, foram realizadas duas experiências nas quais murganhos C57BL/6 (B6) e Nrf2-/- machos foram alimentados com dieta standard ou com dieta enriquecida em ferro carbonilo (FeC) (0,5% ou 2,0%). Os resultados demonstram sobrecarga de ferro nos animais que receberam dieta enriquecida, sendo que os que receberam FeC 2,0% apresentaram níveis mais elevados de ferro hepático e sérico, bem como da saturação da transferrina. Os murganhos Nrf2-/- são mais suscetíveis a esta acumulação, mostrando evidências patológicas mais graves, nomeadamente necrose hepatocítica e infiltração de células inflamatórias. A deleção do Nrf2 associado a uma dieta suplementada com FeC 2,0% parece não ser suficiente para o desenvolvimento de fibrose hepática. O estudo da expressão de genes e proteínas do metabolismo do ferro mostrou que os animais B6 e Nrf2-/- são igualmente capazes de responder à sobrecarga de ferro, sugerindo que a sua diferente suscetibilidade à toxicidade do ferro não se deverá a uma regulação ineficiente da homeostasia do Fe. A dieta com FeC 2,0% aumentou a expressão de dois genes alvo do Nrf2, Nqo1 e Gsta1, o que não se verificou com os genes e proteínas GCLC e GCLM. A expressão de genes pró-inflamatórios não mostrou evidências de inflamação nestes animais. Foi demonstrado que os animais Nrf2-/- são mais suscetíveis à toxicidade do ferro, concluindo-se que a via do Nrf2 é ativada em resposta a uma dieta contendo quantidades excessivas de FeC e que confere proteção contra a acumulação de ferro em murganhos B6.
Resumo:
Purpose - To study the influence of protein structure on the immunogenicity in wildtype and immune tolerant mice of well-characterized degradation products of recombinant human interferon alpha2b (rhIFNα2b). Methods - RhIFNα2b was degraded by metal catalyzed oxidation (M), crosslinking with glutaraldehyde (G), oxidation with hydrogen peroxide (H) and incubation in a boiling water bath (B). The products were characterized with UV absorption, circular dichroism and fluorescence spectroscopy, gel permeation chromatography, reversed-phase HPLC, SDS-PAGE, Western blotting and mass spectrometry. The immunogenicity of the products was evaluated in wildtype mice and in transgenic mice immune tolerant for hIFNα2. Serum antibodies were detected by ELISA or surface plasmon resonance. Results - M-rhIFNα2b contained covalently aggregated rhIFNα2b with three methionines partly oxidized to methionine sulfoxides. G-rhIFNα2b contained covalent aggregates and did not show changes in secondary structure. H-rhIFNα2b was only chemically changed with four partly oxidized methionines. B-rhIFNα2b was largely unfolded and heavily aggregated. Native (N) rhIFNα2b was immunogenic in the wildtype mice but not in the transgenic mice, showing that the latter were immune tolerant for rhIFNα2b. The antirhIFNα2b antibody levels in the wildtype mice depended on the degradation product: M-rhIFNα2b > H-rhIFNα2b ~ N-rhIFNα2b >> B-rhIFNα2b; G-rhIFNα2b did not induce anti-rhIFNα2b antibodies. In the transgenic mice, only M-rhIFNα2b could break the immune tolerance. Conclusions - RhIFNα2b immunogenicity is related to its structural integrity. Moreover, the immunogenicity of aggregated rhIFNα2b depends on the structure and orientation of the constituent protein molecules and/or on the aggregate size.
Resumo:
Purpose: This study was conducted to study the influence of protein structure on the immunogenicity in wild-type and immune tolerant mice of well-characterized degradation products of recombinant human interferon alpha2b (rhIFNα2b). Methods: RhIFNα2b was degraded by metal-catalyzed oxidation (M), cross-linking with glutaraldehyde (G), oxidation with hydrogen peroxide (H), and incubation in a boiling water bath (B). The products were characterized with UV absorption, circular dichroism and fluorescence spectroscopy, gel permeation chromatography, reverse-phase high-pressure liquid chromatography, sodium dodecyl sulfate polyacrylamide gel electrophoresis, Western blotting, and mass spectrometry. The immunogenicity of the products was evaluated in wild-type mice and in transgenic mice immune tolerant for hIFNα2. Serum antibodies were detected by enzyme-linked immunosorbent assay or surface plasmon resonance. Results: M-rhIFNα2b contained covalently aggregated rhIFNα2b with three methionines partly oxidized to methionine sulfoxides. G-rhIFNα2b contained covalent aggregates and did not show changes in secondary structure. H-rhIFNα2b was only chemically changed with four partly oxidized methionines. B-rhIFNα2b was largely unfolded and heavily aggregated. Nontreated (N) rhIFNα2b was immunogenic in the wild-type mice but not in the transgenic mice, showing that the latter were immune tolerant for rhIFNα2b. The anti-rhIFNα2b antibody levels in the wild-type mice depended on the degradation product: M-rhIFNα2b > H-rhIFNα2b ∼ N-rhIFNα2b ≫ B-rhIFNα2b; G-rhIFNα2b did not induce anti-rhIFNα2b antibodies. In the transgenic mice, only M-rhIFNα2b could break the immune tolerance. Conclusions: RhIFNα2b immunogenicity is related to its structural integrity. Moreover, the immunogenicity of aggregated rhIFNα2b depends on the structure and orientation of the constituent protein molecules and/or on the aggregate size.
Resumo:
The relentless discovery of cancer biomarkers demands improved methods for their detection. In this work, we developed protein imprinted polymer on three-dimensional gold nanoelectrode ensemble (GNEE) to detect epithelial ovarian cancer antigen-125 (CA 125), a protein biomarker associated with ovarian cancer. CA 125 is the standard tumor marker used to follow women during or after treatment for epithelial ovarian cancer. The template protein CA 125 was initially incorporated into the thin-film coating and, upon extraction of protein from the accessible surfaces on the thin film, imprints for CA 125 were formed. The fabrication and analysis of the CA 125 imprinted GNEE was done by using cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) techniques. The surfaces of the very thin, protein imprinted sites on GNEE are utilized for immunospecific capture of CA 125 molecules, and the mass of bound on the electrode surface can be detected as a reduction in the faradic current from the redox marker. Under optimal conditions, the developed sensor showed good increments at the studied concentration range of 0.5–400 U mL−1. The lowest detection limit was found to be 0.5 U mL−1. Spiked human blood serum and unknown real serum samples were analyzed. The presence of non-specific proteins in the serum did not significantly affect the sensitivity of our assay. Molecular imprinting using synthetic polymers and nanomaterials provides an alternative approach to the trace detection of biomarker proteins.