939 resultados para Salts in soils


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This overview focuses on the application of chemometrics techniques for the investigation of soils contaminated by polycyclic aromatic hydrocarbons (PAHs) and metals because these two important and very diverse groups of pollutants are ubiquitous in soils. The salient features of various studies carried out in the micro- and recreational environments of humans, are highlighted in the context of the various multivariate statistical techniques available across discipline boundaries that have been effectively used in soil studies. Particular attention is paid to techniques employed in the geosciences that may be effectively utilized for environmental soil studies; classical multivariate approaches that may be used in isolation or as complementary methods to these are also discussed. Chemometrics techniques widely applied in atmospheric studies for identifying sources of pollutants or for determining the importance of contaminant source contributions to a particular site, have seen little use in soil studies, but may be effectively employed in such investigations. Suitable programs are also available for suggesting mitigating measures in cases of soil contamination, and these are also considered. Specific techniques reviewed include pattern recognition techniques such as Principal Components Analysis (PCA), Fuzzy Clustering (FC) and Cluster Analysis (CA); geostatistical tools include variograms, Geographical Information Systems (GIS), contour mapping and kriging; source identification and contribution estimation methods reviewed include Positive Matrix Factorisation (PMF), and Principal Component Analysis on Absolute Principal Component Scores (PCA/APCS). Mitigating measures to limit or eliminate pollutant sources may be suggested through the use of ranking analysis and multi criteria decision making methods (MCDM). These methods are mainly represented in this review by studies employing the Preference Ranking Organisation Method for Enrichment Evaluation (PROMETHEE) and its associated graphic output, Geometrical Analysis for Interactive Aid (GAIA).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mineral delvauxite CaFe3+4(PO4,SO4)2(OH)8•4-6H2O has been characterised by Raman spectroscopy and infrared spectroscopy. The mineral is associated with the minerals diadochite and destinezite. Delvauxite appears to vary in crystallinity from amorphous to semi-crystalline. The mineral is often X-ray non-diffracting. The minerals are found in soils and may be described as ‘colloidal’ minerals. Vibrational spectroscopy enables determination of the molecular structure of delvauxite. Bands are assigned to phosphate and sulphate stretching and bending modes. Two symmetric stretching modes for both the phosphate and sulphate symmetric stretching modes support the concept of non-equivalent phosphate and sulphate units in the mineral structure. Multiple water bending and stretching modes imply that non-equivalent water molecules in the structure exist with different hydrogen bond strengths.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The two minerals diadochite and destinezite of formula Fe2(PO4,SO4)2(OH)•6H2O have been characterised by Raman spectroscopy and complimented with infrared spectroscopy. These two minerals are both found in soils and are identical except for their morphology. Diadochite is amorphous whereas destinezite is highly crystalline. The spectra of diadochite are broad and ill-defined, whereas the spectra of destinezite are intense and well defined. Bands are assigned to phosphate and sulphate stretching and bending modes. Two symmetric stretching modes for both the phosphate and sulphate symmetric stretching modes support the concept of non-equivalent phosphate and sulphate units in the mineral structure. Multiple water bending and stretching modes imply that non-equivalent water molecules in the structure exist with different hydrogen bond strengths.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sarmientite is an environmental mineral; its formation in soils enables the entrapment and immobilisation of arsenic. The mineral sarmientite is often amorphous making the application of X-ray diffraction difficult. Vibrational spectroscopy has been applied to the study of sarmientite. Bands are attributed to the vibrational units of arsenate, sulphate, hydroxyl and water. Raman bands at 794, 814 and 831 cm−1 are assigned to the ν3 (AsO4)3− antisymmetric stretching modes and the ν1 symmetric stretching mode is observed at 891 cm−1. Raman bands at 1003 and 1106 cm−1 are attributed to vibrations. The Raman band at 484 cm−1 is assigned to the triply degenerate (AsO4)3− bending vibration. The high intensity Raman band observed at 355 cm−1 (both lower and upper) is considered to be due to the (AsO4)3−ν2 bending vibration. Bands attributed to water and OH stretching vibrations are observed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The two minerals borickyite and delvauxite CaFe3+4(PO4,SO4)2(OH)8•4-6H2O have the same formula. Are the minerals identical or different? The minerals borickyite and delvauxite have been characterised by Raman spectroscopy. The minerals are related to the minerals diadochite and destinezite. Both minerals are amorphous. Delvauxite appears to vary in crystallinity from amorphous to semi-crystalline. The minerals are often X-ray non-diffracting. The minerals are found in soils and may be described as ‘colloidal’ minerals. Vibrational spectroscopy enables an assessment of the molecular structure of borickyite and delvauxite. Bands are assigned to phosphate and sulphate stretching and bending modes. Multiple water bending and stretching modes imply that non-equivalent water molecules in the structure exist with different hydrogen bond strengths. The two minerals show differing spectra and must be considered as different minerals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have characterized anapaite Ca2Fe2+(PO4)2·4(H2O), a rare Ca and Fe phosphate, using a combination of electron microscopy and vibrational spectroscopy. The mineral occurs in soils and lacustrine sediments and is usually related to the diagenetic process in phosphorous rich sediments. The phosphate anion is characterized by its Raman spectrum with an intense sharp band at 943 cm-1, attributed to the ν1 PO4 3- symmetric stretching mode. Three bands at 992, 1039 and 1071 cm-1 are attributed to ν3 PO4 3-antisymmetric stretching modes. The infrared spectrum of anapaite shows complexity with a series of overlapping bands. Water in the structure of anapaite is observed by OH stretching vibrations at 2777, 3022 and 3176 cm-1 (Raman) and 2744, 3014 and 3096 cm-1 (infrared). The position of these bands provides evidence for the strong hydrogen bonding of water in the anapaite structure and contributes to the stability of the mineral.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work the electrochemical formation of porous Cu/Ag materials is reported via the simple and quick method of hydrogen bubble templating. The bulk and surface composition ratio between Ag and Cu was varied in a systematic manner and was readily controlled by the concentration of precursor metal salts in the electrolyte. The incorporation of Ag within the Cu scaffold only affected the formation of well-defined pores at high Ag loading whereas the internal pore wall structure gradually transformed from dendritic to cube like and finally needle like structures, which was due to the concomitant formation of Cu2O within the structure. The materials were characterised by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Their surface properties were further investigated by surface enhanced Raman spectroscopy (SERS) and electrochemically probed by recording the hydrogen evolution reaction (HER) which is highly sensitive to the nature of the surface. The effect of surface composition was then investigated for its influence on two catalytic reactions namely the reduction of ferricyanide ions with thiosulphate ions and the reduction of 4-nitrophenol with NaBH4 in aqueous solution where it was found that the presence of Ag had a beneficial effect in both cases but more so in the case of nitrophenol reduction. It is believed that this material may have many more potential applications in the area of catalysis, electrocatalysis and photocatalysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aim To evaluate the effectiveness of novel nanohybrids, composed of silver nanoparticles and nanoscale silicate platelets, to clear Pseudomonas aeruginosa biofilms. Materials & methods The nanohybrids were manufactured from an in situ reduction of silver salts in the silicate platelet dispersion, and then applied to biofilms in vitro and in vivo. Results In reference to the biocidal effects of gentamycin, the nanohybrids mitigated the spreading of the biofilms, and initiated robust cell death and exfoliation from the superficial layers of the biofilms in vitro. In vivo, the nanohybrids exhibited significant therapeutic effects by eliminating established biofilms from infected corneas and promoting the recovery of corneal integrity. Conclusion All of the evaluations indicate the high potency of the newly developed silver nanoparticle/nanoscale silicate platelet nanohybrids for eliminating biofilms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Measurement of the moisture variation in soils is required for geotechnical design and research because soil properties and behavior can vary as moisture content changes. The neutron probe, which was developed more than 40 years ago, is commonly used to monitor soil moisture variation in the field. This study reports a full-scale field monitoring of soil moisture using a neutron moisture probe for a period of more than 2 years in the Melbourne (Australia) region. On the basis of soil types available in the Melbourne region, 23 sites were chosen for moisture monitoring down to a depth of 1500 mm. The field calibration method was used to develop correlations relating the volumetric moisture content and neutron counts. Observed results showed that the deepest “wetting front” during the wet season was limited to the top 800 to 1000 mm of soil whilst the top soil layer down to about 550mmresponded almost immediately to the rainfall events. At greater depths (550 to 800mmand below 800 mm), the moisture variations were relatively low and displayed predominantly periodic fluctuations. This periodic nature was captured with Fourier analysis to develop a cyclic moisture model on the basis of an analytical solution of a one-dimensional moisture flow equation for homogeneous soils. It is argued that the model developed can be used to predict the soil moisture variations as applicable to buried structures such as pipes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper develops and presents a fully coupled non-linear finite element procedure to treat the response of piles to ground shocks induced by underground explosions. The Arbitrary Lagrange Euler coupling formulation with proper state material parameters and equations are used in the study. Pile responses in four different soil types, viz, saturated soil, partially saturated soil and loose and dense dry soils are investigated and the results compared. Numerical results are validated by comparing with those from a standard design manual. Blast wave propagation in soils, horizontal pile deformations and damages in the pile are presented. The pile damage presented through plastic strain diagrams will enable the vulnerability assessment of the piles under the blast scenarios considered. The numerical results indicate that the blast performance of the piles embedded in saturated soil and loose dry soil are more severe than those in piles embedded in partially saturated soil and dense dry soil. Present findings should serve as a benchmark reference for future analysis and design.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In previous experiments, increased leaf-Phosphorus (P) content with increasing P supply enhanced the individual leaf expansion and water content of fresh cotton leaves in a severely drying soil. In this paper, we report on the bulk water content of leaves and its components, free and bound water, along with other measures of plant water status, in expanding cotton leaves of various ages in a drying soil with different P concentrations. The bound water in living tissue is more likely to play a major role in tolerance to abiotic stresses by maintaining the structural integrity and/or cell wall extensibility of the leaves, whilst an increased amount of free water might be able to enhance solute accumulation, leading to better osmotic adjustment and tolerance to water stress, and maintenance of the volumes of sub-cellular compartments for expansive leaf growth. There were strong correlations between leaf-P%, leaf water (total, free and bound water) and leaf expansion rate (LER) under water stress conditions in a severely drying soil. Increased soil-P enhanced the uptake of P from a drying soil, leading to increased supply of osmotically active inorganic solutes to the cells in growing leaves. This appears to have led to the accumulation of free water and more bound water, ultimately leading to increased leaf expansion rates as compared to plants in low P soil under similar water stress conditions. The greater amount of bound and free water in the high-P plants was not necessarily associated with changes in cell turgor, and appears to have maintained the cell-wall properties and extensibility under water stressed conditions in soils that are nutritionally P-deficient.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three experiments were conducted on the use of water retaining amendments under newly-laid turf mats. The work focused on the first 12 weeks of establishment. In soils that already possessed a good water-holding capacity, water retaining amendments did not provide any benefit. On a sand-based profile, a rooting depth of 200 mm was achieved with soil amendment products within three weeks of laying turf. Most products differed in their performance relative to each other at each three weekly measurement interval. Polyacrylamide gels gave superior results when the crystals were incorporated into the soil profile. They were not suitable for broadcasting at the soil/sod interface. Finer grades of crystals were less likely to be subject to excessive expansion than medium grade crystals after heavy rainfall. Turf establishment was more responsive to products at higher application rates, however these higher rates may result in surface stability problems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lantana camara is a recognized weed of worldwide significance due to its extensive distribution and its impacts on primary industries and nature conservation. However, quantitative data on the impact of the weed on soil ecosystem properties are scanty, especially in SE Australia, despite the pervasive presence of the weed along its coastal and inland regions. Consequently, mineral soils for physicochemical analyses were collected beneath and away from L. camara infestations in four sites west of Brisbane, SE Australia. These sites (hoop pine plantation, cattle farm, and two eucalyptus forests with occasional grazing and a fire regime, respectively) vary in landscape and land-use types. Significant site effect was more frequently observed than effect due to invasion status. Nonetheless, after controlling for site differences, ~50% of the 23 soil traits examined differed significantly between infested and non-infested soils. Moisture, pH, Ca, total and organic C, and total N (but not exchangeable N in form of NO3-) were significantly elevated, while sodium, chloride, copper, iron, sulfur, and manganese, many of which can be toxic to plant growth if present in excess levels, were present at lower levels in soils supporting L. camara compared to soils lacking the weed. These results indicate that L. camara can improve soil fertility and influence nutrient cycling, making the substratum ideal for its own growth and might explain the ability of the weed to outcompete other species, especially native ones.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Radopholus similis is a major constraint to banana production in Australia and growers have relied on nematicides to manage production losses. The use of organic amendments is one method that may reduce the need for nematicides, but there is limited knowledge of the influence of organic amendments on endo-migratory nematodes, such as R. similis. Nine different amendments, namely, mill mud, mill ash, biosolids, municipal waste compost, banana residue, grass hay, legume hay, molasses and calcium silicate were applied to the three major soil types of the wet tropics region used for banana production. The nutrient content of the amendments was also determined. Banana plants were inoculated with R. similis and grown in the soil-amendment mix for 12-weeks in a glasshouse experiment. Assessments of plant growth, plant-parasitic nematodes and soil nematode community characteristics were made at the termination of the experiment. Significant suppression of plant-parasitic nematodes occurred in soils amended with legume hay, grass hay, banana residue and mill mud relative to untreated soil. These amendments were found to have the highest N and C content. The application of banana residue and mill mud significantly increased shoot dry weight at the termination of the experiment relative to untreated soil. Furthermore, the applications of banana residue, grass hay, mill mud and municipal waste compost increased the potential for suppression of plant-parasitic nematodes through antagonistic activity. The application of amendments that are high in C and N appeared to be able to induce suppression of plant-parasitic nematodes in bananas, by developing a more favourable environment for antagonistic organisms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Macfadyena unguis-cati (L.) Gentry (Bignoniaceae) is a major environmental weed in coastal Queensland, Australia. There is a lack of quantitative data on its leaf chemistry and its impact on soil properties. Soils from infested vs uninfested areas, and leaves of M. unguis-cati and three co-occurring vine species (one exotic, two native) were collected at six sites (riparian and non-riparian) in south-eastern Queensland. Effects of invasion status, species, site and habitat type were examined using univariate and multivariate analyses. Habitat type had a greater effect on soil nutrients than on leaf chemistry. Invasion effect of M. unguis-cati on soil chemistry was more pronounced in non-riparian than in riparian habitat. Significantly higher values were obtained in M. unguis-cati infested (vs. uninfested) soils for ~50% of traits. Leaf ion concentrations differed significantly between exotic and native vines. Observed higher leaf-nutrient load (especially nitrogen, phosphorus and potassium) in exotic plants aligns with the preference of invasive plant species for disturbed habitats with higher nutrient input. Higher load of trace elements (aluminium, boron, cadmium and iron) in its leaves suggests that cycling of heavy-metal ions, many of which are potentially toxic at excess level, could be accelerated in soils of M. unguis-cati-invaded landscape. Although inferences from the present study are based on correlative data, the consistency of the patterns across many sites suggests that M. unguis-cati may improve soil fertility and influence nutrient cycling, perhaps through legacy effects of its own litter input.