984 resultados para SUBTROPICAL MODE WATER


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In October and November 2002, high and relatively high values of chlorophyll a concentration at the sea surface (Cchl) were observed in the English Channel (0.47 mg/m**3), in waters of the North Atlantic Current (0.25 mg/m**3 ), in the tropical and subtropical anticyclonic gyres (0.07-0.42 mg/m**3), and also in the southwestern region of the southern subtropical anticyclonic gyre (usually 0.11-0.23 mg/m**3). The central regions of the southern subtropical anticyclonic gyre (SATG) and the North Atlantic tropical gyre (NATR) were characterized by lower values of Cchl (0.02-0.08 mg/m**3 for the SATG and 0.07-0.14 mg/m**3 for the NATR). At most of the SATG stations, values of surface primary production (Cphs) varied from 2.5 to 5.5 mg C/m**3 per day and were mainly defined by fluctuations of Cchl (r = +0.78) rather than by those of the assimilation number (r = +0.54). Low assimilation activity of phytoplankton in these waters (1.3-4.6 mg chl a per hour) pointed to a lack of nutrients. Analysis of variability of their concentration and composition of photosynthetic pigments showed that, in waters north of 30°N, the growth of phytoplankton was mostly restricted by deficiency of nitrogen, while, in more southern areas, at the majority of stations (about 60%), phosphorus concentrations were minimal. At low concentrations of nitrates and nitrites, ammonium represented itself as a buffer that prevented planktonic algae from extreme degrees of nitric starvation. In tropical waters and in waters of the SATG, primary production throughout the water column varied from 240 to 380 mg C/m**2 30° per day. This level of productivity at stations with low values of C chl (<0.08 mg/m**3) was provided by a well-developed deep chlorophyll maximum and high transparency of water. Light curves of photosynthesis based on in situ measurements point to high efficiency of utilizing penetrating solar radiation by phytoplankton on cloudy days.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sub-Antarctic zone (SAZ) lies between the subtropical convergence (STC) and the sub-Antarctic front (SAF), and is considered one of the strongest oceanic sinks of atmospheric CO2. The strong sink results from high winds and seasonally low sea surface fugacities of CO2 (fCO2), relative to atmospheric fCO2. The region of the SAZ, and immediately south, is also subject to mode and intermediate water formation, yielding a penetration of anthropogenic CO2 below the mixed layer. A detailed analysis of continuous measurements made during the same season and year, February - March 1993, shows a coherent pattern of fCO2 distributions at the eastern (WOCE/SR3 at about 145°E) and western edges (WOCE/I6 at 30°E) of the Indian sector of the Southern Ocean. A strong CO2 sink develops in the Austral summer (delta fCO2 < - 50 µatm) in both the eastern (110°-150°E) and western regions (20°-90°E). The strong CO2 sink in summer is due to the formation of a shallow seasonal mixed-layer (about 100 m). The CO2 drawdown in the surface water is consistent with biologically mediated drawdown of carbon over summer. In austral winter, surface fCO2 is close to equilibrium with the atmosphere (delta fCO2 ± 5 µatm), and the net CO2 exchange is small compared to summer. The near-equilibrium values in winter are associated with the formation of deep winter mixed-layers (up to 700 m). For years 1992-95, the annual CO2 uptake for the Indian Ocean sector of the sub Antarctic Zone (40°-50°S, 20°-150°E) is estimated to be about 0.4 GtC/yr. Extrapolating this estimate to the entire sub-Antarctic zone suggests the uptake in the circumpolar SAZ is approaching 1 GtC/yr.