978 resultados para STRESS CORROSION
Resumo:
A 2D multi-particle model is carried out to understand the effect of microstructural variations and loading conditions on the stress evolution in Al-Si alloy under compression. A total of six parameters are varied to create 26 idealized microstructures: particle size, shape, orientation, matrix temper, strain rate, and temperature. The effect of these parameters is investigated to understand the fracture of Si particles and the yielding of Al matrix. The Si particles are modeled as a linear elastic solid and the Al matrix is modeled as an elasto-plastic solid. The results of the study demonstrate that the increase in particle size decreases the yield strength of the alloy. The particles with high aspect ratio and oriented at 0A degrees and 90A degrees to the loading axis show higher stress values. This implies that the particle shape and orientation are dominant factors in controlling particle fracture. The heat treatment of the alloy is found to increase the stress levels of both particles and matrix. Stress calculations also show that higher particle fracture and matrix yielding is expected at higher strain rate deformation. Particle fracture decreases with increase in temperature and the Al matrix plays an important role in controlling the properties of the alloy at higher temperatures. Further, this strain rate and temperature dependence is more pronounced in the heat-treated microstructure. These predictions are consistent with the experimentally observed Si particle fracture in real microstructure.
Resumo:
The nature of the stress and electric field driven structural and microstructural transformations in the morphotropic phase boundary (MPB) compositions of the high Curie point piezoelectric system BiScO3-PbTiO3 has been examined by ex situ based techniques. Using a powder poling technique, which is based on the concept of exploiting the irreversible structural change that occurs after the application of a strong electric field and stress independently, it was possible to ascertain that both moderate stress and electric field induce identical structural transformation-a fraction of the monoclinic phase transforms irreversibly to the tetragonal phase. Moreover, analysis of the dielectric response before and after poling revealed a counterintuitive phenomenon of poling induced decrease in the spatial coherence of polarization for compositions around the MPB and not so for compositions far away from the MPB range. Exploiting the greater sensitivity of this technique, we demonstrate that the criticality associated with the interferroelectric transition spans a wider composition range than what is conventionally reported in the literature based on bulk x-ray/neutron powder diffraction techniques.
Resumo:
The stress states in Si particles of cast Al-Si based alloys depend on its morphology and the heat treatment given to the alloy. The Si particles fracture less on modification and fracture more in the heat treated condition. An attempt has been made in this work to study the effect of heat treatment and Si modification on the stress states of the particles. Such understanding will be valuable for predicting the ductility of the alloy. The stress states of Si particles are estimated by Raman technique and compared with the microstructure-based FEM simulations. Combination of Electron Back-Scattered Diffraction (EBSD) and frequency shift, polarized micro-Raman technique is applied to determine the stress states in Si particles with (111) orientations. Stress states are measured in the as-received state and under uniaxial compression. The residual stress, the stress in the elastic-plastic regime and the stress which causes fracture of the particles is estimated by Raman technique. FEM study demonstrates that the stress distribution is uniform in modified Si, whereas the unmodified Si shows higher and more complex stress states. The onset of plastic flow is observed at sharp corners of the particles and is followed by localization of strain between particles. Clustering of particles generates more inhomogeneous plastic strain in the matrix. Particle stress estimated by Raman technique is in agreement with FEM calculations. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
We report on the effect of thin silicon nitride (Si3N4) induced tensile stress on the structural release of 200nm thick SOI beam, in the surface micro-machining process. A thin (20nm / 100nm) LPCVD grown Si3N4 is shown to significantly enhance the yield of released beam in wet release technique. This is especially prominent with increase in beam length, where the beams have higher tendency for stiction. We attribute this yield enhancement to the nitride induced tensile stress, as verified by buckling tendency and resonance frequency data obtained from optical profilometry and laser doppler vibrometry.
Resumo:
The work presented in this paper involves the stochastic finite element analysis of composite-epoxy adhesive lap joints using Monte Carlo simulation. A set of composite adhesive lap joints were prepared and loaded till failure to obtain their strength. The peel and shear strain in the bond line region at different levels of load were obtained using digital image correlation (DIC). The corresponding stresses were computed assuming a plane strain condition. The finite element model was verified by comparing the numerical and experimental stresses. The stresses exhibited a similar behavior and a good correlation was obtained. Further, the finite element model was used to perform the stochastic analysis using Monte Carlo simulation. The parameters influencing stress distribution were provided as a random input variable and the resulting probabilistic variation of maximum peel and shear stresses were studied. It was found that the adhesive modulus and bond line thickness had significant influence on the maximum stress variation. While the adherend thickness had a major influence, the effect of variation in longitudinal and shear modulus on the stresses was found to be little. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Reinforcing soil with fibers is a useful method for improving the strength and settlement response of soil. The soil and fiber characteristics and their interaction are some of the major factors affecting the strength of reinforced soil. The fibers are usually randomly distributed in the soil, and their orientation has a significant effect on the behavior of the reinforced soil. In the paper, a study of the effect of anisotropic distribution of fibers on the stress-strain response is presented. Based on the concept of the modified Cam clay model, an analytical model was formulated for the fiber-reinforced soil, and the effect of fiber orientation on the stress-strain behavior of soil was studied in detail. The results show that, as the inclination of fibers with the horizontal plane increased, the contribution of fibers in improving the strength of fiber-reinforced soil decreased. The effect of fibers is maximum when they are in the direction of extension, and vice versa. (C) 2014 American Society of Civil Engineers.
Resumo:
Cells exposed to genotoxic stress induce cellular senescence through a DNA damage response (DDR) pathway regulated by ATM kinase and reactive oxygen species (ROS). Here, we show that the regulatory roles for ATM kinase and ROS differ during induction and maintenance of cellular senescence. Cells treated with different genotoxic agents were analyzed using specific pathway markers and inhibitors to determine that ATM kinase activation is directly proportional to the dose of the genotoxic stress and that senescence initiation is not dependent on ROS or the p53 status of cells. Cells in which ROS was quenched still activated ATM and initiated the DDR when insulted, and progressed normally to senescence. By contrast, maintenance of a viable senescent state required the presence of ROS as well as activated ATM. Inhibition or removal of either of the components caused cell death in senescent cells, through a deregulated ATM-ROS axis. Overall, our work demonstrates existence of an intricate temporal hierarchy between genotoxic stress, DDR and ROS in cellular senescence. Our model reports the existence of different stages of cellular senescence with distinct regulatory networks.
Resumo:
A `powder-poling' technique was developed to study electric field induced structural transformations in ferroelectrics exhibiting a morphotropic phase boundary (MPB). The technique was employed on soft PZT exhibiting a large longitudinal piezoelectric response (d(33) similar to 650 pCN(-1)). It was found that electric poling brings about a considerable degree of irreversible tetragonal to monoclinic transformation. The same transformation was achieved after subjecting the specimen to mechanical stress, which suggests an equivalence of stress and electric field with regard to the structural mechanism in MPB compositions. The electric field induced structural transformation was also found to be accompanied by a decrease in the spatial coherence of polarization.
Resumo:
A comprehensive experimental study has been made on angular sand to investigate various aspects of mechanical behavior. A hollow cylinder torsion testing apparatus is used in this program to apply a range of stress conditions on this angular quartzitic fine sand under monotonic drained shear. The effect of the magnitude and inclination of the principal stresses on an element of sand is studied through these experiments. This magnitude and inclination of the principal stresses are presented as an ``ensemble measure of fabric in sands''. This ensemble measure of fabric in the sands evolves through the shearing process, and reaches the final state, which indeed has a unique fabric. The sand shows significant variation in strength with changing inclination of the principal stresses. The locus of the final stress state in principal stress space is also mapped from these series of experiments. Additional aspects of non-coaxiality, a benchmarking exercise with a few constitutive models is presented here. This experimental approach albeit indirect shows that a unique state which is dependent on the fabric, density and confining stress exists. This suite of experiments provides a well-controlled data set for a clear understanding on the mechanical behavior of sands.
Resumo:
In many organisms ``Universal Stress Proteins'' CUSPS) are induced in response to a variety of environmental stresses. Here we report the structures of two USPs, YnaF and YdaA from Salmonella typhimurium determined at 1.8 angstrom and 2.4 angstrom resolutions, respectively. YnaF consists of a single USP domain and forms a tetrameric organization stabilized by interactions mediated through chloride ions. YdaA is a larger protein consisting of two tandem USP domains. Two protomers of YdaA associate to form a structure similar to the YnaF tetramer. YdaA showed ATPase activity and an ATP binding motif G-2X-G-9X-G(S/T/N) was found in its C-terminal domain. The residues corresponding to this motif were not conserved in YnaF although YnaF could bind ATP. However, unlike YdaA, YnaF did not hydrolyse ATP in vitro. Disruption of interactions mediated through chloride ions by selected mutations converted YnaF into an ATPase. Residues that might be important for ATP hydrolysis could be identified by comparing the active sites of native and mutant structures. Only the C-terminal domain of YdaA appears to be involved in ATP hydrolysis. The structurally similar N-terminal domain was found to bind a zinc ion near the segment equivalent to the phosphate binding loop of the C-terminal domain. Mass spectrometric analysis showed that YdaA might bind a ligand of approximate molecular weight 800 daltons. Structural comparisons suggest that the ligand, probably related to an intermediate in lipid A biosynthesis, might bind at a site close to the zinc ion. Therefore, the N-terminal domain of YdaA binds zinc and might play a role in lipid metabolism. Thus, USPs appear to perform several distinct functions such as ATP hydrolysis, altering membrane properties and chloride sensing. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
This article presents frequentist inference of accelerated life test data of series systems with independent log-normal component lifetimes. The means of the component log-lifetimes are assumed to depend on the stress variables through a linear stress translation function that can accommodate the standard stress translation functions in the literature. An expectation-maximization algorithm is developed to obtain the maximum likelihood estimates of model parameters. The maximum likelihood estimates are then further refined by bootstrap, which is also used to infer about the component and system reliability metrics at usage stresses. The developed methodology is illustrated by analyzing a real as well as a simulated dataset. A simulation study is also carried out to judge the effectiveness of the bootstrap. It is found that in this model, application of bootstrap results in significant improvement over the simple maximum likelihood estimates.
Resumo:
The objective of the present work is to study the effect of electrical process Parameters (duty cycle and frequency) on morphological, structural, and in-vitro corrosion characteristics of oxide films formed on zirconium by plasma electrolytic oxidation in an electrolyte system consisting of 5 g/L of trisodium orthophosphate. The oxide films fabricated on zirconium by systematically varying the duty cycle and frequency are characterized for its phase composition, surface morphology, chemical composition, roughness, wettability, surface energy, scratch resistance, corrosion resistance, apatite forming ability and osteoblast cell adhesion. X-ray diffraction pattern of all the oxide films showed the predominance of m-ZrO2 phase. Dense and uniform films with thickness varying from 9 to 15 mu m and roughness in the range of 0.62 to 1.03 mu m are formed. Porosity of oxide films is found to be increased with an increase infrequency. The water contact angle results demonstrated that the oxide films exhibited similar hydrophilicity to zirconium substrate. All oxide films showed improved corrosion resistance, as indicated by far lower corrosion current density and passive corrosion potential compared to the zirconium substrate in simulated body fluid environment, and among the four different combinations of duty cycle and frequency employed in the present study, the oxide film formed at 95% duty cycle and 50 Hz frequency (HDLF film) showed superior pitting corrosion resistance, which can be attributed to its pore free morpholOgy. Scratch test results showed that the HDLF oxide film adhered firmly to the substrate by developing a notable scratch resistance at 19.5 +/- 1.2.N. Besides the best corrosion resistance and scratch retistance, the HDLF film also showed good apatite forming ability and osteo sarcoma cell adhesion on its surface. The HDLF oxide film on zirconium with superior surface characteristics is believed to be useful for various types of implants in the dental and orthopedic fields. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Various NixCo1-x alloys (with x varying from 0-60 wt%, Ni: nickel, Co: cobalt) were prepared by vacuum arc melting and mixed with polyvinylidene fluoride (PVDF) to design lightweight, flexible and corrosion resistant materials that can attenuate electromagnetic radiation. The saturation magnetization scaled with the fraction of Co in the alloy. Two key properties such as high-magnetic permeability and high-electrical conductivity were targeted. While the former was achieved using a Ni-Co alloy, multiwalled carbon nanotubes (CNTs) in the composites accomplished the latter. A unique approach was adopted to prepare the composites wherein PVDF powder along with CNTs and Ni-Co flakes were made into a paste, using a solvent, followed by hot pressing. Interestingly, CNTs facilitated in uniform dispersion of the Ni-Co alloy in PVDF, as manifested from synergistic improvement in the electrical conductivity. A significant improvement in the shielding effectiveness (41 dB, >99.99% attenuation) was achieved with the addition of 50 wt% of Ni40Co60 alloy and 3 wt% CNTs. Intriguingly, due to the unique processing technique adopted here, the flexibility of the composites was retained and more interestingly, the composites were resistant to corrosion as compared to only Ni-Co alloy.
Resumo:
Mycobacteria are endowed with rich and diverse machinery for the synthesis, utilization, and degradation of cAMP. The actions of cyclic nucleotides are generally mediated by binding of cAMP to conserved and well characterized cyclic nucleotide binding domains or structurally distinct cGMP-specific and -regulated cyclic nucleotide phosphodiesterase, adenylyl cyclase, and E. coli transcription factor FhlA (GAF) domain-containing proteins. Proteins with cyclic nucleotide binding and GAF domains can be identified in the genome of mycobacterial species, and some of them have been characterized. Here, we show that a significant fraction of intracellular cAMP is bound to protein in mycobacterial species, and by using affinity chromatography techniques, we identify specific universal stress proteins (USP) as abundantly expressed cAMP-binding proteins in slow growing as well as fast growing mycobacteria. We have characterized the biochemical and thermodynamic parameters for binding of cAMP, and we show that these USPs bind cAMP with a higher affinity than ATP, an established ligand for other USPs. We determined the structure of the USP MSMEG_3811 bound to cAMP, and we confirmed through structure-guided mutagenesis, the residues important for cAMP binding. This family of USPs is conserved in all mycobacteria, and we suggest that they serve as ``sinks'' for cAMP, making this second messenger available for downstream effectors as and when ATP levels are altered in the cell.
Resumo:
Mycobacterium tuberculosis employs various strategies to modulate host immune responses to facilitate its persistence in macrophages. The M. tuberculosis cell wall contains numerous glycoproteins with unknown roles in pathogenesis. Here, by using Concanavalin A and LC-MS analysis, we identified a novel mannosylated glycoprotein phosphoribosyltransferase, encoded by Rv3242c from M. tuberculosis cell walls. Homology modeling, bioinformatic analyses, and an assay of phosphoribosyltransferase activity in Mycobacterium smegmatis expressing recombinant Rv3242c (MsmRv3242c) confirmed the mass spectrometry data. Using Mycobacterium marinum-zebrafish and the surrogate MsmRv3242c infection models, we proved that phosphoribosyltransferase is involved in mycobacterial virulence. Histological and infection assays showed that the M. marinum mimG mutant, an Rv3242c orthologue in a pathogenic M. marinum strain, was strongly attenuated in adult zebrafish and also survived less in macrophages. In contrast, infection with wild type and the complemented Delta mimG: Rv3242c M. marinum strains showed prominent pathological features, such as severe emaciation, skin lesions, hemorrhaging, and more zebrafish death. Similarly, recombinant Msm Rv3242c bacteria showed increased invasion in non-phagocytic epithelial cells and longer intracellular survival in macrophages as compared with wild type and vector control M. smegmatis strains. Further mechanistic studies revealed that the Rv3242c- and mimG-mediated enhancement of intramacrophagic survival was due to inhibition of autophagy, reactive oxygen species, and reduced activities of superoxide dismutase and catalase enzymes. Infection with MsmRv3242c also activated the MAPK pathway, NF-kappa B, and inflammatory cytokines. In summary, we show that a novel mycobacterial mannosylated phosphoribosyltransferase acts as a virulence and immunomodulatory factor, suggesting that it may constitute a novel target for antimycobacterial drugs.