937 resultados para STAR POLYMERS
Resumo:
Efforts are ongoing to decrease the noise of the GRACE gravity field models and hence to arrive closer to the GRACE baseline. The most significant error sources belong the untreated errors in the observation data and the imperfections in the background models. The recent study (Bandikova&Flury,2014) revealed that the current release of the star camera attitude data (SCA1B RL02) contain noise systematically higher than expected by about a factor 3-4. This is due to an incorrect implementation of the algorithms for quaternion combination in the JPL processing routines. Generating improved SCA data requires that valid data from both star camera heads are available which is not always the case because the Sun and Moon at times blind one camera. In the gravity field modeling, the attitude data are needed for the KBR antenna offset correction and to orient the non-gravitational linear accelerations sensed by the accelerometer. Hence any improvement in the SCA data is expected to be reflected in the gravity field models. In order to quantify the effect on the gravity field, we processed one month of observation data using two different approaches: the celestial mechanics approach (AIUB) and the variational equations approach (ITSG). We show that the noise in the KBR observations and the linear accelerations has effectively decreased. However, the effect on the gravity field on a global scale is hardly evident. We conclude that, at the current level of accuracy, the errors seen in the temporal gravity fields are dominated by errors coming from sources other than the attitude data.
Resumo:
The controlled arraying of DNA strands on adaptive polymeric platforms remains a challenge. Here, the noncovalent synthesis of DNA-grafted supramolecular polymers from short chimeric oligomers is presented. The oligomers are composed of an oligopyrenotide strand attached to the 5′-end of an oligodeoxynucleotide. The supramolecular polymerization of these oligomers in an aqueous medium leads to the formation of one-dimensional (1D) helical ribbon structures. Atomic force and transmission electron microscopy show rod-like polymers of several hundred nanometers in length. DNA-grafted polymers of the type described herein will serve as models for the development of structurally and functionally diverse supramolecular platforms with applications in materials science and diagnostics.
Resumo:
BACKGROUND Rivaroxaban has become an alternative to vitamin-K antagonists (VKA) for stroke prevention in non-valvular atrial fibrillation (AF) patients due to its favourable risk-benefit profile in the restrictive setting of a large randomized trial. However in the primary care setting, physician's motivation to begin with rivaroxaban, treatment satisfaction and the clinical event rate after the initiation of rivaroxaban are not known. METHODS Prospective data collection by 115 primary care physicians in Switzerland on consecutive nonvalvular AF patients with newly established rivaroxaban anticoagulation with 3-month follow-up. RESULTS We enrolled 537 patients (73±11years, 57% men) with mean CHADS2 and HAS-BLED-scores of 2.2±1.3 and 2.4±1.1, respectively: 301(56%) were switched from VKA to rivaroxaban (STR-group) and 236(44%) were VKA-naïve (VN-group). Absence of routine coagulation monitoring (68%) and fixed-dose once-daily treatment (58%) were the most frequent criteria for physicians to initiate rivaroxaban. In the STR-group, patient's satisfaction increased from 3.6±1.4 under VKA to 5.5±0.8 points (P<0.001), and overall physician satisfaction from 3.9±1.3 to 5.4±0.9 points (P<0.001) at 3months of rivaroxaban therapy (score from 1 to 6 with higher scores indicating greater satisfaction). In the VN-group, both patient's (5.4±0.9) and physician's satisfaction (5.5±0.7) at follow-up were comparable to the STR-group. During follow-up, 1(0.19%; 95%CI, 0.01-1.03%) ischemic stroke, 2(0.37%; 95%CI, 0.05-1.34%) major non-fatal bleeding and 11(2.05%; 95%CI, 1.03-3.64%) minor bleeding complications occurred. Rivaroxaban was stopped in 30(5.6%) patients, with side effects being the most frequent reason. CONCLUSION Initiation of rivaroxaban for patients with nonvalvular AF by primary care physicians was associated with a low clinical event rate and with high overall patient's and physician's satisfaction.
Resumo:
Conjugation of functional entities with a specific set of optical, mechanical or biological properties to DNA strands allows engineering of sophisticated DNA-containing architectures. Among various hybrid systems, DNA-grafted polymers occupy an important place in modern materials science. In this contribution we present the non-covalent synthesis and properties of DNA-grafted linear supramolecular polymers (SPs), which are assembled in a controllable manner from short chimeric DNA-pyrene oligomers. The synthetic oligomers consist of two parts: a 10 nucleotides long DNA chain and a covalently attached segment of variable number of phosphodiester-linked pyrenes. The temperature-dependent formation of DNA-grafted SPs is described by a nucleation-elongation mechanism. The high tendency of pyrenes to aggregate in water, leads to the rapid formation of SPs. The core of the assemblies consists of stacked pyrenes. They form a 1D platform, to which the DNA chains are attached. Combined spectroscopic and microscopic studies reveal that the major driving forces of the polymerization are π-stacking of pyrenes and hydrophobic interactions, and DNA pairing contributes to a lesser extent. AFM and TEM experiments demonstrate that the 1D SPs appear as elongated ribbons with a length of several hundred nanometers. They exhibit an apparent helical structure with a pitch-to-pitch distance of 50±15 nm. Since DNA pairing is a highly selective process, the ongoing studies are aimed to utilize DNA-grafted SPs for the programmable arrangement of functional entities. For example, the addition of non-modified complementary DNA strands to the DNA-grafted SPs leads to the cooperative formation of higher-order assemblies. Also, our experiments suggest that the fluorescent pyrene core of 1D ribbons serves as an efficient donor platform for energy transfer applications.
Resumo:
Conjugation of functional entities with a specific set of optical, mechanical or biological properties to DNA strands allows engineering of sophisticated DNA-containing architectures. Among various hybrid systems, DNA-grafted polymers occupy an important place in modern materials science. In this contribution we present the non-covalent synthesis and properties of DNA-grafted linear supramolecular polymers (SPs), which are assembled in a controllable manner from short chimeric DNA-pyrene oligomers. The synthetic oligomers consist of two parts: a 10 nucleotides long DNA chain and a covalently attached segment of variable number of phosphodiester-linked pyrenes. The temperature-dependent formation of DNA-grafted SPs is described by a nucleation-elongation mechanism. The high tendency of pyrenes to aggregate in water, leads to the rapid formation of SPs. The core of the assemblies consists of stacked pyrenes. They form a 1D platform, to which the DNA chains are attached. Combined spectroscopic and microscopic studies reveal that the major driving forces of the polymerization are π-stacking of pyrenes and hydrophobic interactions, and DNA pairing contributes to a lesser extent. AFM and TEM experiments demonstrate that the 1D SPs appear as elongated ribbons with a length of several hundred nanometers. They exhibit an apparent helical structure with a pitch-to-pitch distance of 50±15 nm. Since DNA pairing is a highly selective process, the ongoing studies are aimed to utilize DNA-grafted SPs for the programmable arrangement of functional entities. For example, the addition of non-modified complementary DNA strands to the DNA-grafted SPs leads to the cooperative formation of higher-order assemblies. Also, our experiments suggest that the fluorescent pyrene core of 1D ribbons serves as an efficient donor platform for energy transfer applications.
Resumo:
The impact of polymer modification on the physical properties of cementitious mortars is investigated using a multimethod approach. Special emphasis is put on the identification and quantification of different polymer components within the cementitious matrix. With respect to thin-bed applications, particularly tile adhesives, the spatial distributions of latex, cellulose ether (CE), polyvinyl alcohol (PVA), and cement hydration products can be quantified. It is shown that capillary forces and evaporation induce water fluxes in the interconnected part of the pore system, which transport CE, PVA, and cement ions to the mortar interfaces. In contrast, the distribution of latex remains homogeneous. In combination with results from qualitative experiments, the quantitative findings allow reconstruction of the evolution from fresh to hardened mortar, including polymer film formation, cement hydration, and water migration. The resulting microstructure and the failure modes can be correlated with the final adhesive strength of the tile adhesive. The results demonstrate that skinning prior to tile inlaying can strongly reduce wetting properties of the fresh mortar and lower final adhesive strength.
Resumo:
DNA-grafted supramolecular polymers (SPs) allow the programmed organization of DNA in a highly regular, one-dimensional array. Oligonucleotides are arranged along the edges of pyrene-based helical polymers. Addition of complementary oligonucleotides triggers the assembly of individual nanoribbons resulting in the development of extended supramolecular networks. Network formation is enabled by cooperative coaxial stacking interactions of terminal GC base pairs. The process is accompanied by structural changes in the pyrene polymer core that can be followed spectroscopically. Network formation is reversible, and disassembly into individual ribbons is realized either via thermal denaturation or by addition of a DNA separator strand.
Resumo:
By reacting 4,4′-bipyridine (bpy) with selected trinuclear triangular CuII complexes, [Cu3(μ3-OH)(μ-pz)3(RCOO)2(LL′)] [pz = pyrazolate anion; R = CH3, CH3CH2, CH2═CH, CH2═C(CH3); L, L′ = Hpz, H2O, MeOH] in MeOH, the substitution of monotopic ligands by ditopic bpy was observed. Depending on the stoichiometric reaction ratios, different compounds were isolated and structurally characterized. One- and two-dimensional coordination polymers (CPs), as well as two hexanuclear CuII clusters were identified. One of the hexanuclear clusters self-assembles into a supramolecular three-dimensional structure, and its crystal packing shows the presence of two intersecting channels, one of which is almost completely occupied by guest bpy, while in the second one guest water molecules are present. This compound also shows a reversible, thermally induced, single-crystal-to-single-crystal transition.
Resumo:
The reactions of 4,4′-bipyridine with selected trinuclear triangular copper(II) complexes, [Cu3(μ3-OH)(μ-pz)3(RCOO)2Lx], [pz = pyrazolate anion, R = CH3(CH2)n (2 ≤ n ≤ 5); L = H2O, MeOH, EtOH] yielded a series of 1D coordination polymers (CPs) based on the repetition of [Cu3(μ3-OH)(μ-pz)3] secondary building units joined by bipyridine. The CPs were characterized by conventional analytical methods (elemental analyses, ESI-MS, IR spectra) and single crystal XRD determinations. An unprecedented 1D CP, generated through the bipyridine bridging hexanuclear copper clusters moieties, two 1D CPs presenting structural analogies, and two monodimensional tapes having almost exactly superimposable structures, were obtained. In one case, the crystal packing makes evident the presence of small, not-connected pores, accounting for ca. 6% of free cell volume.
Resumo:
BACKGROUND AND PURPOSE Mechanical thrombectomy is beneficial for patients with acute ischemic stroke and a proximal anterior occlusion, but it is unclear if these results can be extrapolated to patients with an M2 occlusion. The purpose of this study was to examine the technical aspects, safety, and outcomes of mechanical thrombectomy with a stent retriever in patients with an isolated M2 occlusion who were included in 3 large multicenter prospective studies. MATERIALS AND METHODS We included patients from the Solitaire Flow Restoration Thrombectomy for Acute Revascularization (STAR), Solitaire With the Intention For Thrombectomy (SWIFT), and Solitaire With the Intention for Thrombectomy as Primary Endovascular Treatment (SWIFT PRIME) studies, 3 large multicenter prospective studies on thrombectomy for ischemic stroke. We compared outcomes and technical details of patients with an M2 with those with an M1 occlusion. All patients were treated with a stent retriever. Imaging data and outcomes were scored by an independent core laboratory. Successful reperfusion was defined as modified Thrombolysis in Cerebral Infarction score of 2b/3. RESULTS We included 50 patients with an M2 and 249 patients with an M1 occlusion. Patients with an M2 occlusion were older (mean age, 71 versus 67 years; P = .04) and had a lower NIHSS score (median, 13 versus 17; P < .001) compared with those with an M1 occlusion. Procedural time was nonsignificantly shorter in patients with an M2 occlusion (median, 29 versus 35 minutes; P = .41). The average number of passes with a stent retriever was also nonsignificantly lower in patients with an M2 occlusion (mean, 1.4 versus 1.7; P = .07). There were no significant differences in successful reperfusion (85% versus 82%, P = .82), symptomatic intracerebral hemorrhages (2% versus 2%, P = 1.0), device-related serious adverse events (6% versus 4%, P = .46), or modified Rankin Scale score 0-2 at follow-up (60% versus 56%, P = .64). CONCLUSIONS Endovascular reperfusion therapy appears to be feasible in selected patients with ischemic stroke and an M2 occlusion.
Resumo:
A successful bottom-up fill of single Damascene test features is achieved by using a two-component additive package consisting of bis-(sodium-sulfopropyl)-disulfide (SPS) and Imep polymers (polymerizates of imidazole and epichlorohydrin). In addition, a remarkable leveling effect is observed. Clearly, the Imep additive combines bottom-up fill capabilities with leveling characteristics in one single polymer component. These unique hybrid properties of the Imep are rationalized on the basis of an extended N-NDR (N-shaped negative differential resistance) being present in the linear-sweep voltammogram of the SPS/Imep additive system during Cu electrodeposition.
Resumo:
Welsch (Projektbearbeiter): Bitte von Vertretern der Prager Studentenschaft um akademische Reformen: Glaubens- , Lehr- u. Lernfreiheit, Zweisprachigkeit, Korporationsfreiheit
Resumo:
Creation of biocompatible functional materials is an important task in supramolecular chemistry. In this contribution, we report on noncovalent synthesis of DNA-grafted supramolecular polymers (SPs). DNA-grafted SPs enable programmed arrangement of oligonucleotides in a regular, tightly packed one-dimensional array. Further interactions of DNA-grafted SPs with complementary DNA strands leads to the formation of networks through highly cooperative G-C blunt-end stacking interactions. The structural changes in the polymeric core enable to monitor spectroscopically the stepwise formation of networks. Such stimuli-responsive supramolecular networks may lead to the development of DNA-based smart materials.