989 resultados para Russian electricity market
Resumo:
In this paper our aim is to gain a better understanding of the relationship between market volatility and industrial structure. As conflicting results have been documented regarding the relationship between market industry concentration and market volatility, this study investigates this relationship in the time series. We have found that this relationship is only significant and positive for Spain. Our results suggest that we cannot generalize across different countries that market industrial structure (concentration) is a significant factor in explaining market volatility.
Resumo:
This study examines the role of illiquidity (proxied by the proportion of zero returns) as an additional risk factor in asset pricing. We use Portuguese monthly data, covering the period between January 1988 and December 2008. We compute an illiquidity factor using the Fama and French [Fama, E. F., and K. R. French (1993), "Common risk factors in the returns on stocks and bonds", Journal of Financial Economics, Vol. 33, Nº. 1, pp. 3-56] procedure and analyze the performance of CAPM, Fama-French three-factor model and illiquidity-augmented versions of these models in explaining both the time-series and the cross-section of returns. Our results reveal that the effect of characteristic liquidity is subsumed by the models considered, but the risk of illiquidity is not priced in the Portuguese stock market.
Resumo:
One of the main arguments in favour of the adoption and convergence with the international accounting standards published by the IASB (i.e. IAS/IFRS) is that these will allow comparability of financial reporting across countries. However, because these standards use verbal probability expressions (v.g. “probable”) when establishing the recognition and disclosure criteria for accounting elements, they require professional accountants to interpret and classify the probability of an outcome or event taking into account those terms and expressions and to best decide in terms of financial reporting. This paper reports part of a research we carried out on the interpretation of “in context” verbal probability expressions used in the IAS/IFRS by the auditors registered with the Portuguese Securities Market Commission, the Comissão do Mercado de Valores Mobiliários (CMVM). Our results provide support for the hypothesis that culture affects the CMVM registered auditors’ interpretation of verbal probability expressions through its influence on the accounting value (or attitude) of conservatism. Our results also suggest that there are significant differences in their interpretation of the term “probable”, which is consistent with literature in general. Since “probable” is the most frequent verbal probability expression used in the IAS/IFRS, this may have a negative impact on financial statements comparability.
Resumo:
In this paper, a stochastic programming approach is proposed for trading wind energy in a market environment under uncertainty. Uncertainty in the energy market prices is the main cause of high volatility of profits achieved by power producers. The volatile and intermittent nature of wind energy represents another source of uncertainty. Hence, each uncertain parameter is modeled by scenarios, where each scenario represents a plausible realization of the uncertain parameters with an associated occurrence probability. Also, an appropriate risk measurement is considered. The proposed approach is applied on a realistic case study, based on a wind farm in Portugal. Finally, conclusions are duly drawn. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Dissertação apresentada ao Instituto Politécnico do Porto para obtenção do Grau de Mestre em Gestão das Organizações, Ramo de Gestão de Empresas Orientador: Professor Doutor Orlando Manuel Martins Marques de Lima Rua
Resumo:
Long-term contractual decisions are the basis of an efficient risk management. However those types of decisions have to be supported with a robust price forecast methodology. This paper reports a different approach for long-term price forecast which tries to give answers to that need. Making use of regression models, the proposed methodology has as main objective to find the maximum and a minimum Market Clearing Price (MCP) for a specific programming period, and with a desired confidence level α. Due to the problem complexity, the meta-heuristic Particle Swarm Optimization (PSO) was used to find the best regression parameters and the results compared with the obtained by using a Genetic Algorithm (GA). To validate these models, results from realistic data are presented and discussed in detail.
Resumo:
The large increase of renewable energy sources and Distributed Generation (DG) of electricity gives place to the Virtual Power Producer (VPP) concept. VPPs can reinforce the importance of these generation technologies making them valuable in electricity markets. One of the most important tasks of a VPP is the conjugation of technologies to obtain a consistent set of associated producers and allow them to operate in the electric market. This paper presents some characteristics regarding already existent technologies and relevant aspects for producers and for VPP.
Resumo:
In this work it is proposed the design of a mobile system to assist car drivers in a smart city environment oriented to the upcoming reality of Electric Vehicles (EV). Taking into account the new reality of smart cites, EV introduction, Smart Grids (SG), Electrical Markets (EM), with deregulation of electricity production and use, drivers will need more information for decision and mobility purposes. A mobile application to recommend useful related information will help drivers to deal with this new reality, giving guidance towards traffic, batteries charging process, and city mobility infrastructures (e. g. public transportation information, parking places availability and car & bike sharing systems). Since this is an upcoming reality with possible process changes, development must be based on agile process approaches (Web services).
Resumo:
The spread and globalization of distributed generation (DG) in recent years has should highly influence the changes that occur in Electricity Markets (EMs). DG has brought a large number of new players to take action in the EMs, therefore increasing the complexity of these markets. Simulation based on multi-agent systems appears as a good way of analyzing players’ behavior and interactions, especially in a coalition perspective, and the effects these players have on the markets. MASCEM – Multi-Agent System for Competitive Electricity Markets was created to permit the study of the market operation with several different players and market mechanisms. MASGriP – Multi-Agent Smart Grid Platform is being developed to facilitate the simulation of micro grid (MG) and smart grid (SG) concepts with multiple different scenarios. This paper presents an intelligent management method for MG and SG. The simulation of different methods of control provides an advantage in comparing different possible approaches to respond to market events. Players utilize electric vehicles’ batteries and participate in Demand Response (DR) contracts, taking advantage on the best opportunities brought by the use of all resources, to improve their actions in response to MG and/or SG requests.
Resumo:
Power systems have been through deep changes in recent years, namely with the operation of competitive electricity markets in the scope and the increasingly intensive use of renewable energy sources and distributed generation. This requires new business models able to cope with the new opportunities that have emerged. Virtual Power Players (VPPs) are a new player type which allows aggregating a diversity of players (Distributed Generation (DG), Storage Agents (SA), Electrical Vehicles, (V2G) and consumers), to facilitate their participation in the electricity markets and to provide a set of new services promoting generation and consumption efficiency, while improving players` benefits. A major task of VPPs is the remuneration of generation and services (maintenance, market operation costs and energy reserves), as well as charging energy consumption. This paper proposes a model to implement fair and strategic remuneration and tariff methodologies, able to allow efficient VPP operation and VPP goals accomplishment in the scope of electricity markets.
Resumo:
This paper proposes a particle swarm optimization (PSO) approach to support electricity producers for multiperiod optimal contract allocation. The producer risk preference is stated by a utility function (U) expressing the tradeoff between the expectation and variance of the return. Variance estimation and expected return are based on a forecasted scenario interval determined by a price range forecasting model developed by the authors. A certain confidence level is associated to each forecasted scenario interval. The proposed model makes use of contracts with physical (spot and forward) and financial (options) settlement. PSO performance was evaluated by comparing it with a genetic algorithm-based approach. This model can be used by producers in deregulated electricity markets but can easily be adapted to load serving entities and retailers. Moreover, it can easily be adapted to the use of other type of contracts.
Resumo:
This paper describes a methodology that was developed for the classification of Medium Voltage (MV) electricity customers. Starting from a sample of data bases, resulting from a monitoring campaign, Data Mining (DM) techniques are used in order to discover a set of a MV consumer typical load profile and, therefore, to extract knowledge regarding to the electric energy consumption patterns. In first stage, it was applied several hierarchical clustering algorithms and compared the clustering performance among them using adequacy measures. In second stage, a classification model was developed in order to allow classifying new consumers in one of the obtained clusters that had resulted from the previously process. Finally, the interpretation of the discovered knowledge are presented and discussed.
Resumo:
Recent changes in power systems mainly due to the substantial increase of distributed generation and to the operation in competitive environments has created new challenges to operation and planning. In this context, Virtual Power Players (VPP) can aggregate a diversity of players, namely generators and consumers, and a diversity of energy resources, including electricity generation based on several technologies, storage and demand response. Demand response market implementation has been done in recent years. Several implementation models have been considered. An important characteristic of a demand response program is the trigger criterion. A program for which the event trigger depends on the Locational Marginal Price (LMP) used by the New England Independent System operator (ISO-NE) inspired the present paper. This paper proposes a methodology to support VPP demand response programs management. The proposed method has been computationally implemented and its application is illustrated using a 32 bus network with intensive use of distributed generation. Results concerning the evaluation of the impact of using demand response events are also presented.
Resumo:
The increasing use of distributed generation units based on renewable energy sources, the consideration of demand-side management as a distributed resource, and the operation in the scope of competitive electricity markets have caused important changes in the way that power systems are operated. The new distributed resources require an entity (player) capable to make them able to participate in electricity markets. This entity has been known as Virtual Power Player (VPP). VPPs need to consider all the business opportunities available to their resources, considering all the relevant players, the market and/or other VPPs to accomplish their goals. This paper presents a methodology that considers all these opportunities to minimize the operation costs of a VPP. The method is applied to a distribution network managed by four independent VPPs with intensive use of distributed resources.
Resumo:
With the current increase of energy resources prices and environmental concerns intelligent load management systems are gaining more and more importance. This paper concerns a SCADA House Intelligent Management (SHIM) system that includes an optimization module using deterministic and genetic algorithm approaches. SHIM undertakes contextual load management based on the characterization of each situation. SHIM considers available generation resources, load demand, supplier/market electricity price, and consumers’ constraints and preferences. The paper focus on the recently developed learning module which is based on artificial neural networks (ANN). The learning module allows the adjustment of users’ profiles along SHIM lifetime. A case study considering a system with fourteen discrete and four variable loads managed by a SHIM system during five consecutive similar weekends is presented.