957 resultados para Runge Lenz Three Body Hydrogen Molecular Ion
Resumo:
Two new cadmium coordination polymers namely Cd(HAmTrz-COO)(4)(NH4+)(2)] 1; and Cd(HAmTrz)(2)I-2](n) 2; (HAmTrz-COOH = 3-amino-1,2,4-triazole-5-carboxylic acid), have been prepared based on HAmTrz-COOH as ligand. The crystal structures of 1 and 2 have been determined by single-crystal X-ray diffraction technique. In coordination-complex 1 four triazole ligands coordinate via N1 nitrogen leading to a tetrahedral geometry around cadmium ion, while in 2 the ligand prefers to coordinate to the metal in a bidentate bridging mode. The structures of both the coordination polymers can be envisaged as 3D hydrogen bonded networks. Thermogravimetric analysis shows that 2 is more stable than 1 owing to different coordination numbers of cadmium atoms. Photoluminescence properties of both the compounds have been investigated in the solid state. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A supramolecular approach that uses hydrogen-bonding interaction as a driving force to accomplish exceptional self-sorting in the formation of imine-based covalent organic cages is discussed. Utilizing the dynamic covalent chemistry approach from three geometrically similar dialdehydes (A, B, and D) and the flexible triamine tris(2-aminoethyl)amine (X), three new 3+2] self-assembled nanoscopic organic cages have been synthesized and fully characterized by various techniques. When a complex mixture of the dialdehydes and triamine X was subjected to reaction, it was found that only dialdehyde B (which has OH groups for H-bonding) reacted to form the corresponding cage B3X2 selectively. Surprisingly, the same reaction in the absence of aldehyde B yielded a mixture of products. Theoretical and experimental investigations are in complete agreement that the presence of the hydroxyl moiety adjacent to the aldehyde functionality in B is responsible for the selective formation of cage B3X2 from a complex reaction mixture. This spectacular selection was further analyzed by transforming a nonpreferred (non-hydroxy) cage into a preferred (hydroxy) cage B3X2 by treating the former with aldehyde B. The role of the H-bond in partner selection in a mixture of two dialdehydes and two amines has also been established. Moreover, an example of unconventional imine bond metathesis in organic cage-to-cage transformation is reported.
Resumo:
The theoretical estimation of the dissociation constant, or pK(a), of weak acids continues to be a challenging field. Here, we show that ab initio CarParrinello molecular dynamics simulations in conjunction with metadynamics calculations of the free-energy profile of the dissociation reaction provide reasonable estimates of the pK(a) value. Water molecules, sufficient to complete the three hydration shells surrounding the acid molecule, were included explicitly in the computation procedure. The free-energy profiles exhibit two distinct minima corresponding to the dissociated and neutral states of the acid, and the difference in their values provides the estimate for pK(a). We show for a series of organic acids that CPMD simulations in conjunction with metadynamics can provide reasonable estimates of pK(a) values. The acids investigated were aliphatic carboxylic acids, chlorine-substituted carboxylic acids, cis- and trans-butenedioic acid, and the isomers of hydroxybenzoic acid. These systems were chosen to highlight that the procedure could correctly account for the influence of the inductive effect as well as hydrogen bonding on pK(a) values of weak organic acids. In both situations, the CPMD metadynamics procedure faithfully reproduces the experimentally observed trend and the magnitudes of the pK(a) values.
Resumo:
Selectin-ligand interactions are crucial to such biological processes as inflammatory cascade or tumor metastasis. How transient formation and dissociation of selectin-ligand bonds in blood flow are coupled to molecular conformation at atomic level, however, has not been well understood. In this study, steered molecular dynamics (SMD) simulations were used to elucidate the intramolecular and intermolecular conformational evolutions involved in forced dissociation of three selectin-ligand systems: the construct consisting of P-selectin lectin (Lec) and epidermal growth factor (EGF)-like domains (P-LE) interacting with synthesized sulfoglycopeptide or SGP-3, P-LE with sialyl Lewis X (sLeX), and E-LE with sLeX. SMD simulations were based on newly built-up force field parameters including carbohydrate units and sulfated tyrosine(s) using an analogy approach. The simulations demonstrated that the complex dissociation was coupled to the molecular extension. While the intramolecular unraveling in P-LESGP-3 system mainly resulted from the destroy of the two anti-parallel sheets of EGF domain and the breakage of hydrogen-bond cluster at the Lec-EGF interface, the intermolecular dissociation was mainly determined by separation of fucose (FUC) from Ca2+ ion in all three systems. Conformational changes during forced dissociations depended on pulling velocities and forces, as well as on how the force was applied. This work provides an insight into better understanding of conformational changes and adhesive functionality of selectin-ligand interactions under external forces.
Resumo:
Part I
Potassium bis-(tricyanovinyl) amine, K+N[C(CN)=C(CN)2]2-, crystallizes in the monoclinic system with the space group Cc and lattice constants, a = 13.346 ± 0.003 Å, c = 8.992 ± 0.003 Å, B = 114.42 ± 0.02°, and Z = 4. Three dimensional intensity data were collected by layers perpendicular to b* and c* axes. The crystal structure was refined by the least squares method with anisotropic temperature factor to an R value of 0.064.
The average carbon-carbon and carbon-nitrogen bond distances in –C-CΞN are 1.441 ± 0.016 Å and 1.146 ± 0.014 Å respectively. The bis-(tricyanovinyl) amine anion is approximately planar. The coordination number of the potassium ion is eight with bond distances from 2.890 Å to 3.408 Å. The bond angle C-N-C of the amine nitrogen is 132.4 ± 1.9°. Among six cyano groups in the molecule, two of them are bent by what appear to be significant amounts (5.0° and 7.2°). The remaining four are linear within the experimental error. The bending can probably be explained by molecular packing forces in the crystals.
Part II
The nuclear magnetic resonance of 81Br and 127I in aqueous solutions were studied. The cation-halide ion interactions were studied by studying the effect of the Li+, Na+, K+, Mg++, Cs+ upon the line width of the halide ions. The solvent-halide ion interactions were studied by studying the effects of methanol, acetonitrile, and acetone upon the line width of 81Br and 127I in the aqueous solutions. It was found that the viscosity plays a very important role upon the halide ions line width. There is no specific cation-halide ion interaction for those ions such as Mg++, Di+, Na+, and K+, whereas the Cs+ - halide ion interaction is strong. The effect of organic solvents upon the halide ion line width in aqueous solutions is in the order acetone ˃ acetonitrile ˃ methanol. It is suggested that halide ions do form some stable complex with the solvent molecules and the reason Cs+ can replace one of the ligands in the solvent-halide ion complex.
Part III
An unusually large isotope effect on the bridge hydrogen chemical shift of the enol form of pentanedione-2, 4(acetylacetone) and 3-methylpentanedione-2, 4 has been observed. An attempt has been made to interpret this effect. It is suggested from the deuterium isotope effect studies, temperature dependence of the bridge hydrogen chemical shift studies, IR studies in the OH, OD, and C=O stretch regions, and the HMO calculations, that there may probably be two structures for the enol form of acetylacetone. The difference between these two structures arises mainly from the electronic structure of the π-system. The relative population of these two structures at various temperatures for normal acetylacetone and at room temperature for the deuterated acetylacetone were calculated.
Resumo:
Reaction of thiamine or thiamine monophosphate (TMP) with K2Pt(NO2)(4) afforded a metal complex, Pt(thiamine)(NO2)(3) (1), and two salt-type compounds, (H-thiamine)[Pt(NO2)(4)]. 2H(2)O (2) and (TMP)(2)[Pt(NO2)(4)]. 2H(2)O (3), which were structurally characterized by X-ray diffraction. In 1, the square-planar Pt2+ ion is coordinated to the pyrimidine N(1'), a usual metal-binding site, and three NO2- groups. The thiamine molecule exists as a monovalent cation in 1 and a divalent cation in 2 while the TMP molecule is a monovalent cation in 3. In each compound, thiamine or TMP adopts the usual F conformation and forms two types of host-guest-like interactions with anions, which are of the bridging forms, C(2)-H . . . anion . . . pyrimidine-ring and N(4'1)-H(...)anion(...)thiazolium-ring. In 3, there is an additional anion-bridging interaction between the pyrimidine and thiazolium rings of TMP, being of the form C(6')-H . . . anion . . . thiazolium-ring. The salts 2 and 3 show similar hydrogen-bonded cyclic dimers of thiamine or TMP between which the anions are held. Results are compared with those of the other thiamine-platinum complexes. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The fragmentations of three bifunctional phenylether compounds including 2-(2, 6-dichloro)phenoxyl propionitrile, N-hydroxyl-4-butoxyl phenylacetyl amine(bufexamc) and 2-(1-methylethoxyl) phenol methylcarbamate (Propoxur) under electron impact ionization were reported, Metastable ion(MI) and collision-induced dissociation(CID) at a low energy have been used to study the fragmentation pathways from molecular ions. Apart from the simple bond cleavages, and the unimolecular dissociations via ion/neutral complex intermediate as a competitive mechanism were demonstrated, Moreover, the intramolecular hydrogen transfer and double hydrogen transfers in the fragmentations of these compounds were discussed in detail.
Resumo:
The Li-ion battery has for a number of years been a key factor that has enabled an ever increasing number of modern consumer devices, while in recent years has also been sought to power a range of emerging electric and hybrid electric vehicles. Due to their importance and popularity, a number of characteristics of Li-ion batteries have been subjected to intense work aimed at radical improvement. Although electrode material selection intrinsically defines characteristics like maximum capacity or voltage, engineering of the electrode structure may yield significant improvements to the lifetime performance of the battery, which would not be available if the material was used in its bulk form. The body of work presented in this thesis describes the relationship between the structure of electrochemically active materials and the course of the electrochemical processes occurring within the electrode. Chapter one describes the motivation behind the research presented herein. Chapter two serves to highlight a number of key advancements which have been made and detailed in the literature over recent years, pertaining to the use of nanostructured materials in Li-ion technology. Chapter three details methods and techniques applied in developing the body of work presented in this thesis. Chapter four details structural, molecular and electrochemical characteristics of tin oxide nanoparticle based electrodes, with particular emphasis on the relationship between the size distribution and the electrode performance. Chapter five presents findings of structural, electrochemical and optical study of indium oxide nanoparticles grown on silicon by molecular beam epitaxy. In chapter 6, tin oxide inverted opal electrodes are investigated for the conduct of the electrochemical performance of the electrodes under varying rate of change of potential. Chapter 7 presents the overall conclusions drawn from the results presented in this thesis, coupled with an indication of potential future work which may be explored further.
Resumo:
Integrated "ICT chromophore-receptor" systems show ion-induced shifts in their electronic absorption spectra. The wavelength of observation can be used to reversibly configure the system to any of the four logic operations permissible with a single input (YES, NOT, PASS 1, PASS 0), under conditions of ion input and transmittance output. We demonstrate these with dyes integrated into Tsien's calcium receptor, 1-2. Applying multiple ion inputs to 1-2 also allows us to perform two- or three-input OR or NOR operations. The weak fluorescence output of 1 also shows YES or NOT logic depending on how it is configured by excitation and emission wavelengths. Integrated "receptor(1)-ICT chromophore-receptor(2)" systems 3-5 selectively target two ions into the receptor terminals. The ion-induced transmittance output of 3-5 can also be configured via wavelength to illustrate several logic types including, most importantly, XOR. The opposite effects of the two ions on the energy of the chromophore excited state is responsible for this behaviour. INHIBIT and REVERSE IMPLICATION are two of the other logic types seen here. Integration of XOR logic with a preceding OR operation can be arranged by using three ion inputs. The fluorescence output of these systems can be configured via wavelength to display INHIBIT or NOR logic under two-input conditions. The superposition or multiplicity of logic gate configurations is an unusual consequence of the ability to simultaneously observe multiple wavelengths.
Resumo:
Results are presented for e(+) scattering by H- in the impact energy range 0less than or equal toE(0)less than or equal to10 eV. These include integrated cross sections for Ps formation in the 1s, 2s, and 2p states, as well as in an aggregate of states with ngreater than or equal to3, and for direct ionization. Differential cross sections for Ps formation in the 1s, 2s, and 2p states are also exhibited. The calculations are based on a coupled pseudostate approach employing 19 Ps pseudostates centered on the e(+). It is found that Ps formation in the 2p state dominates that in the 1s or 2s states below 8 eV, that formation in states with ngreater than or equal to3 exceeds the sum of the n=1 and n=2 cross sections above 2.5 eV, and that direct ionization outstrips total Ps formation above 6.3 eV. The threshold law (E-0-->0) for exothermic Ps formation, which includes the cases Ps(1s), Ps(2s), and Ps(2p), is shown to be 1/E-0.
Resumo:
The extraction of both UO22+ and trivalent lanthanide and actinide ions (Am3+, Nd3+, Eu3+) by dialkylphosphoric or dialkylphosphinic acids from aqueous solutions into the ionic liquid, 1-decyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide has been studied and compared to extractions into dodecane. Radiotracer partitioning measurements show comparable patterns of distribution ratios for both the ionic liquid/aqueous and dodecane/aqueous systems, and the limiting slopes at low acidity indicate the partitioning of neutral complexes in both solvent systems. The metal ion coordination environment, elucidated from EXAFS and UV-visible spectroscopy measurements, is equivalent in the ionic liquid and dodecane solutions with coordination of the uranyl cation by two hydrogen-bonded extractant dimers, and of the trivalent cations by three extractant dimers. This is the first definitive report of a system where both the biphasic extraction equilibria and metal coordination environment are the same in an ionic liquid and a molecular organic solvent.
Resumo:
We report on the observation of fast hydrogen atoms in a capacitively coupled RF reactor by optical emission spectroscopy. For the analysis we use the prominent H-alpha emission line of atomic hydrogen in combination with other lines from molecular hydrogen and argon. Several chaxacteristic emission structures can be identified. One of these structures is related to fast hydrogen atoms traveling from the surface of the powered electrode to the plasma bulk. From the appearance time within the RF period we conclude that this feature originates from ion bombardment of the electrode surface. Measured pressure dependencies and a simple model for the ion dynamics support this assumption.
Resumo:
The tegumental allergen-like (TAL) proteins from Schistosoma mansoni are part of a family of calcium binding proteins found only in parasitic flatworms. These proteins have attracted interest as potential drug or vaccine targets, yet comparatively little is known about their biochemistry. Here, we compared the biochemical properties of three members of this family: SmTAL1 (Sm22.6), SmTAL2 (Sm21.7) and SmTAL3 (Sm20.8). Molecular modelling suggested that, despite similarities in domain organisation, there are differences in the three proteins’ structures. SmTAL1 was predicted to have two functional calcium binding sites and SmTAL2 was predicted to have one. Despite the presence of two EF-hand-like structures in SmTAL3, neither was predicted to be functional. These predictions were confirmed by native gel electrophoresis, intrinsic fluorescence and differential scanning fluorimetry: both SmTAL1 and SmTAL2 are able to bind calcium ions reversibly, but SmTAL3 is not. SmTAL1 is also able to interact with manganese, strontium, iron(II) and nickel ions. SmTAL2 has a different ion binding profile interacting with cadmium, manganese, magnesium, strontium and barium ions in addition to calcium. All three proteins form dimers and, in contrast to some Fasciola hepatica proteins from the same family; dimerization is not affected by calcium ions. SmTAL1 interacts with the anti-schistosomal drug praziquantel and the calmodulin antagonists trifluoperazine, chlorpromazine and W7. SmTAL2 interacts only with W7. SmTAL3 interacts with the aforementioned calmodulin antagonists and thiamylal, but not praziquantel. Overall, these data suggest that the proteins have different biochemical properties and thus, most likely, different in vivo functions.
Resumo:
The molecules of ethyl 4-(5-amino-3-methyl-1H-pyrazol-1yl) benzoate, C13H15N3O2, are linked by two independent N-H center dot center dot center dot O hydrogen bonds into a chain of edge-fused and alternating R-4(2)(8) and R-2(2)(20) rings. A combination of N-H center dot center dot center dot N and N-H center dot center dot center dot O hydrogen bonds links the molecules of methyl 4-(5-amino-3-tert-butyl-1H-pyrazol-1-yl) benzoate, C15H19N3O2, into sheets of alternating R-2(2)(20) and R-6(6)(32) rings. In 4-(5-amino-3-methyl-1H-pyrazol-1-yl) benzoic acid monohydrate, C11H11N3O2 center dot H2O, the molecular components are linked into a three-dimensional framework structure by a combination of five independent hydrogen bonds, two of O-H center dot center dot center dot N type and one each of O-H center dot center dot center dot O, N-H center dot center dot center dot O and N-H center dot center dot center dot N types
Resumo:
Two new mono-aqua-bridged dinuclear Cu(II) complexes of tridentate NNO Schiff bases, [Cu-2(mu-H2O)L-2(1)(H2O)(2)](BF4)(2)center dot 2H(2)O (1) and [Cu-2(mu-H2O)L-2(2)(H2O)(2)](BF4)(2)center dot 2H(2)O (2) where HL1 = 2-[1-(2-dimethylamino-ethylimino)-ethyl]-phenol and HL2 =2-[(2-dimethylamino-ethylimino)-methyl]-phenol were synthesized. Both the complexes were characterized by single-crystal X-ray diffraction analyses and variable-temperature magnetic measurements. For both the complexes each Cu(II) ion is in a square-pyramidal environment being bonded to three atoms from the tridentate NNO Schiff base and a terminal H2O molecule in the equatorial plane; a second H2O ligand acts as a bridge between the two Cu(II) centres through the axial positions. Hydrogen bonds between the terminal H2O ligand and the Schiff base of the adjacent centre complete the intra-dimer linkages. Variable-temperature (4-300 K) magnetic susceptibility measurement shows the presence of significant antiferromagnetic coupling for both the complexes (J = -12.2 and -12.5 cm(-1), respectively, for 1 and 2), mediated mainly through the intra-dimer H-bonds.