916 resultados para Round and square balers
Resumo:
We conducted an in-situ X-ray micro-computed tomography heating experiment at the Advanced Photon Source (USA) to dehydrate an unconfined 2.3 mm diameter cylinder of Volterra Gypsum. We used a purpose-built X-ray transparent furnace to heat the sample to 388 K for a total of 310 min to acquire a three-dimensional time-series tomography dataset comprising nine time steps. The voxel size of 2.2 μm3 proved sufficient to pinpoint reaction initiation and the organization of drainage architecture in space and time. We observed that dehydration commences across a narrow front, which propagates from the margins to the centre of the sample in more than four hours. The advance of this front can be fitted with a square-root function, implying that the initiation of the reaction in the sample can be described as a diffusion process. Novel parallelized computer codes allow quantifying the geometry of the porosity and the drainage architecture from the very large tomographic datasets (20483 voxels) in unprecedented detail. We determined position, volume, shape and orientation of each resolvable pore and tracked these properties over the duration of the experiment. We found that the pore-size distribution follows a power law. Pores tend to be anisotropic but rarely crack-shaped and have a preferred orientation, likely controlled by a pre-existing fabric in the sample. With on-going dehydration, pores coalesce into a single interconnected pore cluster that is connected to the surface of the sample cylinder and provides an effective drainage pathway. Our observations can be summarized in a model in which gypsum is stabilized by thermal expansion stresses and locally increased pore fluid pressures until the dehydration front approaches to within about 100 μm. Then, the internal stresses are released and dehydration happens efficiently, resulting in new pore space. Pressure release, the production of pores and the advance of the front are coupled in a feedback loop.
Resumo:
In a letter to a close friend dated April 1922 Le Corbusier announced that he was to publish his first major book, Architecture et révolution, which would collect “a set ofarticles from L’EN.”1—L’Esprit nouveau, the revue jointly edited by him and painter Amédée Ozenfant, which ran from 1920 to 1925.2 A year later, Le Corbusier sketched a book cover design featuring “LE CORBUSIER - SAUGNIER,” the pseudonymic compound of Pierre Jeanneret and Ozenfant, above a square-framed single-point perspective of a square tunnel vanishing toward the horizon. Occupying the lower half of the frame was the book’s provisional title in large handwritten capital letters, ARCHITECTURE OU RÉVOLUTION, each word on a separate line, the “ou” a laconic inflection of Paul Laffitte’s proposed title, effected by Le Corbusier.3 Laffitte was one of two publishers Le Corbusier was courting between 1921 and 1922.4 An advertisement for the book, with the title finally settled upon, Vers une architecture, 5 was solicited for L’Esprit nouveau number 18. This was the original title conceived with Ozenfant, and had in fact already appeared in two earlier announcements.6 “Architecture ou révolution” was retained as the name of the book’s crucial and final chapter—the culmination of six chapters extracted from essays in L’Esprit nouveau. This chapter contained the most quoted passage in Vers une architecture, used by numerous scholars to adduce Le Corbusier’s political sentiment in 1923 to the extent of becoming axiomatic of his early political thought.7 Interestingly, it is the only chapter that was not published in L’Esprit nouveau, owing to a hiatus in the journal’s production from June 1922 to November 1923.8 An agitprop pamphlet was produced in 1922, after L’Esprit nouveau 11-12, advertising an imminent issue “Architecture ou révolution” with the famous warning: “the housing crisis will lead to the revolution. Worry about housing.”9
Resumo:
Prompted by the continuing transition to community care, mental health nurses are considering the role of social support in community adaptation. This article demonstrates the importance of distinguishing between kinds of social support and presents findings from the first round data of a longitudinal study of community adaptation in 156 people with schizophrenia conducted in Brisbane, Australia. All clients were interviewed using the relevant subscales of the Diagnostic Interview Schedule to confirm a primary diagnosis of schizophrenia. The study set out to investigate the relationship between community adaptation and social support. Community adaptation was measured with the Brief Psychiatric Rating Scale (BPRS), the Life Skills Profile (LSP) and measures of dissatisfaction with life and problems in daily living developed by the authors. Social support was measured with the Arizona Social Support Interview Schedule (ASSIS). The BPRS and ASSIS were incorporated into a client interview conducted by trained interviewers. The LSP was completed on each client by an informal carer (parent, relative or friend) or a professional carer (case manager or other health professional) nominated by the client. Hierarchical regression analysis was used to examine the relationship between community adaptation and four sets of social support variables. Given the order in which variables were entered in regression equations, a set of perceived social support variables was found to account for the largest unique variance of four measures of community adaptation in 96 people with schizophrenia for whom complete data are available from the first round of the three-wave longitudinal study. A set of the subjective experiences of the clients accounted for the largest unique variance in measures of symptomatology, life skills, dissatisfaction with life, and problems in daily living. Sets of community support, household support and functional variables accounted for less variance. Implications for mental health nursing practice are considered.
Resumo:
This study draws on communication accommodation theory, social identity theory and cognitive dissonance theory to drive a ‘Citizen’s Round Table’ process that engages community audiences on energy technologies and strategies that potentially mitigate climate change. The study examines the effectiveness of the process in determining the strategies that engage people in discussion. The process is designed to canvas participants’ perspectives and potential reactions to the array of renewable and non-renewable energy sources, in particular, underground storage of CO2. Ninety-five people (12 groups) participated in the process. Questionnaires were administered three times to identify changes in attitudes over time, and analysis of video, audio-transcripts and observer notes enabled an evaluation of level of engagement and communication among participants. The key findings of this study indicate that the public can be meaningfully engaged in discussion on the politically sensitive issue of CO2 capture and storage (CCS) and other low emission technologies. The round table process was critical to participants’ engagement and led to attitude change towards some methods of energy production. This study identifies a process that can be used successfully to explore community attitudes on politically-sensitive topics and encourages an examination of attitudes and potential attitude change.
Resumo:
The well-established under-frequency load shedding (UFLS) is deemed to be the last of effective remedial measures against a severe frequency decline of a power system. With the ever-increasing size of power systems and the extensive penetration of distributed generators (DGs) in power systems, the problem of developing an optimal UFLS strategy is facing some new challenges. Given this background, an optimal UFLS strategy for a distribution system with DGs and load static characteristics taken into consideration is developed. Based on the frequency and the rate of change of frequency, the presented strategy consists of several basic rounds and a special round. In the basic round, the frequency emergency can be alleviated by quickly shedding some loads. In the special round, the frequency security can be maintained, and the operating parameters of the distribution system can be optimized by adjusting the output powers of DGs and some loads. The modified IEEE 37-node test feeder is employed to demonstrate the essential features of the developed optimal UFLS strategy in the MATLAB/SIMULINK environment.
Resumo:
Intercalated Archean komatiites and dacites sit above a thick footwall dacite unit in the host rock succession at the Black Swan Nickel Mine, north of Kalgoorlie in the Yilgarn Craton, Western Australia. Both lithofacies occur in units that vary in scale from laterally extensive at the scale of the mine lease to localized, thin, irregular bodies, from > 100 m thick to only centimetres thick. Some dacites are only slightly altered and deformed, and are interpreted to post-date major deformation and alteration (late porphyries). However, the majority of the dacites display evidence of deformation, especially at contacts, and metamorphism, varying from silicification and chlorite alteration at contacts to pervasive low grade regional metamorphic alteration represented by common assemblages of chlorite, sericite and albite. Texturally, the dacites vary from entirely massive and coherent to partially brecciated to totally brecciated. Strangely, some dacites are coherent at the margins and brecciated internally. Breccia textures vary from cryptically defined, to blocky, closely packed, in situ jig-saw fit textures with secondary minerals in fractures between clasts, to more apparent matrix rich textures with round clast forms, giving apparent conglomerate textures. Some clast zones have multi-coloured clasts, giving the impression of varied provenance. Strangely however, all these textural variants have gradational relationships with each other, and no bedding or depositional structures are present. This indicates that all textures have an in situ origin. The komatiites are generally altered and pervasively carbonate veined. Preservation of original textures is patchy and local, but includes coarse adcumulate, mesocumulate, orthocumulate, crescumulate-harrisite and occasionally spinifex textures. Where original contacts between komatiites and dacites are preserved intact (i.e. not sheared or overprinted by alteration), the komatiites have chilled margins, whereas the dacites do not. The margins of the dacites are commonly silicified, and inclusions of dacite occur in komatiite, even at the top contacts of komatiite units, but komatiite clasts do not occur in the dacites. The komatiites therefore were emplaced as sills into the dacites, and the intercalated relationships are interpreted as intrusive. The brecciation and alteration in the dacites are interpreted as being largely due to hydraulic fracturing and alteration induced by contact metamorphic effects and hydrothermal alteration deriving from the intrusion of komatiites into the felsic pile. The absence of autobreccia and hyaloclastite textures in the dacites suggest that they were emplaced as an earlier intrusive (sill?) complex at a high level in the crust.
Resumo:
Metrics such as passengers per square metre have been developed to define optimum or crowded rail passenger density. Whilst such metrics are important to operational procedures, service evaluation and reporting, they fail to fully capture and convey the ways in which passengers experience crowded situations. This paper reports findings from a two year study of rail passenger crowding in five Australian capital cities which involved a novel mixed-methodology including ethnography, focus groups and an online stated preference choice experiment. The resulting data address the following four fundamental research questions: 1) to what extent are Australian rail passengers concerned by crowding, 2) what conditions exacerbate feelings of crowdedness, 3) what conditions mitigate feelings of crowdedness, and 4) how can we usefully understand passengers’ experiences of crowdedness? It concludes with some observations on the significance and implications of these findings for customer service provision. The findings outlined in this paper demonstrate that the experience of crowdedness (including its tolerance) cannot be understood in isolation from other customer services issues such as interior design, quality of environment, safety and public health concerns. It is hypothesised that tolerance of crowding will increase alongside improvements to overall customer service. This was the first comprehensive study of crowding in the Australian rail industry.
Resumo:
Dynamic capabilities are widely considered to incorporate those processes that enable organizations to sustain superior performance over time. In this paper, we argue theoretically and demonstrate empirically that these effects are contingent on organizational structure and the competitive intensity in the market. Results from partial least square structural equation modeling (PLS-SEM) analyses indicate that organic organizational structures facilitate the impact of dynamic capabilities on organizational performance. Furthermore, we find that the performance effects of dynamic capabilities are contingent on the competitive intensity faced by firms. Our findings demonstrate the performance effects of internal alignment between organizational structure and dynamic capabilities, as well as the external fit of dynamic capabilities with competitive intensity. We outline the advantages of PLS-SEM for modeling latent constructs, such as dynamic capabilities, and conclude with managerial implications.
Resumo:
Intellectual property is crucial to the promotion of innovation. It provides an incentive to innovate as well as security for investment in innovation. The industries of the 21st century-information technology, biotechnology, pharmaceuticals, communications, education and entertainment – are all knowledge-based. The WTO Agreement on Trade-Related Aspects of Intellectual Property Rights (the TRIPS Agreement), adopted in 1994 at the conclusion of the Uruguay Round of trade negotiations, requires all WTO member countries to provide for the protection and enforcement of intellectual property rights. Having forged a link for the first time between intellectual property rights and the international trading system, the adoption of TRIPS means that any country that aims to participate fully in the global economy needs to understand the role of intellectual property and align its intellectual property laws and practices with the international minimum standards prescribed by TRIPS. However, for developing and least-developed countries, the implementation of intellectual property systems and enforcement mechanisms raises questions and challenges. Does recognition and enforcement of intellectual property serve their development needs and objectives? Does TRIPS encourage or hinder the transfer of technologies to developing and least-developed countries, particularly those that meet urgent needs in areas such as public health, food security, water and energy? What is the effect of TRIPS on developing countries’ access to knowledge and information? Is there scope for flexibility in implementation of TRIPS in pursuit of development strategies?
Resumo:
The aim of this work is to develop software that is capable of back projecting primary fluence images obtained from EPID measurements through phantom and patient geometries in order to calculate 3D dose distributions. In the first instance, we aim to develop a tool for pretreatment verification in IMRT. In our approach, a Geant4 application is used to back project primary fluence values from each EPID pixel towards the source. Each beam is considered to be polyenergetic, with a spectrum obtained from Monte Carlo calculations for the LINAC in question. At each step of the ray tracing process, the energy differential fluence is corrected for attenuation and beam divergence. Subsequently, the TERMA is calculated and accumulated to an energy differential 3D TERMA distribution. This distribution is then convolved with monoenergetic point spread kernels, thus generating energy differential 3D dose distributions. The resulting dose distributions are accumulated to yield the total dose distribution, which can then be used for pre-treatment verification of IMRT plans. Preliminary results were obtained for a test EPID image comprised of 100 9 100 pixels of unity fluence. Back projection of this field into a 30 cm9 30 cm 9 30 cm water phantom was performed, with TERMA distributions obtained in approximately 10 min (running on a single core of a 3 GHz processor). Point spread kernels for monoenergetic photons in water were calculated using a separate Geant4 application. Following convolution and summation, the resulting 3D dose distribution produced familiar build-up and penumbral features. In order to validate the dose model we will use EPID images recorded without any attenuating material in the beam for a number of MLC defined square fields. The dose distributions in water will be calculated and compared to TPS predictions.
Analysis and optimisation of the preferences of decision-makers in black-start group decision-making
Resumo:
As the first stage of power system restoration after a blackout, an optimal black-start scheme is very important for speeding up the whole restoration procedure. Up to now, much research work has been done on generating or selecting an optimal black-start scheme by a single round of decision-making. However, less attention has been paid for improving the final decision-making results through a multiple-round decision-making procedure. In the group decision-making environment, decision-making results evaluated by different black-start experts may differ significantly with each other. Thus, the consistency of black-start decision-making results could be deemed as an important indicator in assessing the black-start group decision-making results. Given this background, an intuitionistic fuzzy distance-based method is presented to analyse the consistency of black-start group decision-making results. Moreover, the weights of black-start indices as well as the weights of decision-making experts are modified in order to optimise the consistency of black-start group decision-making results. Finally, an actual example is served for demonstrating the proposed method.
Resumo:
In the construction industry, contractors have to improve the efficiency of markup decision-making to survive from fierce business competition. The effect of client type on markup decision has been aware in previous studies and contractors are advocated to take account of decision factors properly when they are confronted with different types of projects. Nevertheless, the rationales behind the inclusion of different factors in markup decision-making for different projects sustain unknown. In this study, fifty-three factors were identified after extensive literature review and interviews with professionals. The identified factors were afterwards grouped under the headings of nine attributes and compiled in a questionnaire for survey in China. Using the Hotelling’s T-square test, it is found that three attributes (i.e., project characteristic, client characteristic, and macro condition) can explain the effect of client type on contractors’ markup decision. The research findings provide useful insights into the cognition of bid pricing as well as the improvement of bidding efficiency. While the research works were situated in China, contractors in other countries could benefit from the research findings in a similar vein.
Resumo:
Background The largest proportion of cancer patients are aged 65 years and over. Increasing age is also associated with nutritional risk and multi-morbidities—factors which complicate the cancer treatment decision-making process in older patients. Objectives To determine whether malnutrition risk and Body Mass Index (BMI) are associated with key oncogeriatric variables as potential predictors of chemotherapy outcomes in geriatric oncology patients with solid tumours. Methods In this longitudinal study, geriatric oncology patients (aged ≥65 years) received a Comprehensive Geriatric Assessment (CGA) for baseline data collection prior to the commencement of chemotherapy treatment. Malnutrition risk was assessed using the Malnutrition Screening Tool (MST) and BMI was calculated using anthropometric data. Nutritional risk was compared with other variables collected as part of standard CGA. Associations were determined by chi-square tests and correlations. Results Over half of the 175 geriatric oncology patients were at risk of malnutrition (53.1%) according to MST. BMI ranged from 15.5–50.9kg/m2, with 35.4% of the cohort overweight when compared to geriatric cutoffs. Malnutrition risk was more prevalent in those who were underweight (70%) although many overweight participants presented as at risk (34%). Malnutrition risk was associated with a diagnosis of colorectal or lung cancer (p=0.001), dependence in activities of daily living (p=0.015) and impaired cognition (p=0.049). Malnutrition risk was positively associated with vulnerability to intensive cancer therapy (rho=0.16, p=0.038). Larger BMI was associated with a greater number of multi-morbidities (rho =.27, p=0.001. Conclusions Malnutrition risk is prevalent among geriatric patients undergoing chemotherapy, is more common in colorectal and lung cancer diagnoses, is associated with impaired functionality and cognition and negatively influences ability to complete planned intensive chemotherapy.
Resumo:
In Australia and increasingly worldwide, methamphetamine is one of the most commonly seized drugs analysed by forensic chemists. The current well-established GC/MS methods used to identify and quantify methamphetamine are lengthy, expensive processes, but often rapid analysis is requested by undercover police leading to an interest in developing this new analytical technique. Ninety six illicit drug seizures containing methamphetamine (0.1% - 78.6%) were analysed using Fourier Transform Infrared Spectroscopy with an Attenuated Total Reflectance attachment and Chemometrics. Two Partial Least Squares models were developed, one using the principal Infrared Spectroscopy peaks of methamphetamine and the other a Hierarchical Partial Least Squares model. Both of these models were refined to choose the variables that were most closely associated with the methamphetamine % vector. Both of the models were excellent, with the principal peaks in the Partial Least Squares model having Root Mean Square Error of Prediction 3.8, R2 0.9779 and lower limit of quantification 7% methamphetamine. The Hierarchical Partial Least Squares model had lower limit of quantification 0.3% methamphetamine, Root Mean Square Error of Prediction 5.2 and R2 0.9637. Such models offer rapid and effective methods for screening illicit drug samples to determine the percentage of methamphetamine they contain.
Resumo:
Introduction: The use of amorphous-silicon electronic portal imaging devices (a-Si EPIDs) for dosimetry is complicated by the effects of scattered radiation. In photon radiotherapy, primary signal at the detector can be accompanied by photons scattered from linear accelerator components, detector materials, intervening air, treatment room surfaces (floor, walls, etc) and from the patient/phantom being irradiated. Consequently, EPID measurements which presume to take scatter into account are highly sensitive to the identification of these contributions. One example of this susceptibility is the process of calibrating an EPID for use as a gauge of (radiological) thickness, where specific allowance must be made for the effect of phantom-scatter on the intensity of radiation measured through different thicknesses of phantom. This is usually done via a theoretical calculation which assumes that phantom scatter is linearly related to thickness and field-size. We have, however, undertaken a more detailed study of the scattering effects of fields of different dimensions when applied to phantoms of various thicknesses in order to derive scattered-primary ratios (SPRs) directly from simulation results. This allows us to make a more-accurate calibration of the EPID, and to qualify the appositeness of the theoretical SPR calculations. Methods: This study uses a full MC model of the entire linac-phantom-detector system simulated using EGSnrc/BEAMnrc codes. The Elekta linac and EPID are modelled according to specifications from the manufacturer and the intervening phantoms are modelled as rectilinear blocks of water or plastic, with their densities set to a range of physically realistic and unrealistic values. Transmissions through these various phantoms are calculated using the dose detected in the model EPID and used in an evaluation of the field-size-dependence of SPR, in different media, applying a method suggested for experimental systems by Swindell and Evans [1]. These results are compared firstly with SPRs calculated using the theoretical, linear relationship between SPR and irradiated volume, and secondly with SPRs evaluated from our own experimental data. An alternate evaluation of the SPR in each simulated system is also made by modifying the BEAMnrc user code READPHSP, to identify and count those particles in a given plane of the system that have undergone a scattering event. In addition to these simulations, which are designed to closely replicate the experimental setup, we also used MC models to examine the effects of varying the setup in experimentally challenging ways (changing the size of the air gap between the phantom and the EPID, changing the longitudinal position of the EPID itself). Experimental measurements used in this study were made using an Elekta Precise linear accelerator, operating at 6MV, with an Elekta iView GT a-Si EPID. Results and Discussion: 1. Comparison with theory: With the Elekta iView EPID fixed at 160 cm from the photon source, the phantoms, when positioned isocentrically, are located 41 to 55 cm from the surface of the panel. At this geometry, a close but imperfect agreement (differing by up to 5%) can be identified between the results of the simulations and the theoretical calculations. However, this agreement can be totally disrupted by shifting the phantom out of the isocentric position. Evidently, the allowance made for source-phantom-detector geometry by the theoretical expression for SPR is inadequate to describe the effect that phantom proximity can have on measurements made using an (infamously low-energy sensitive) a-Si EPID. 2. Comparison with experiment: For various square field sizes and across the range of phantom thicknesses, there is good agreement between simulation data and experimental measurements of the transmissions and the derived values of the primary intensities. However, the values of SPR obtained through these simulations and measurements seem to be much more sensitive to slight differences between the simulated and real systems, leading to difficulties in producing a simulated system which adequately replicates the experimental data. (For instance, small changes to simulated phantom density make large differences to resulting SPR.) 3. Comparison with direct calculation: By developing a method for directly counting the number scattered particles reaching the detector after passing through the various isocentric phantom thicknesses, we show that the experimental method discussed above is providing a good measure of the actual degree of scattering produced by the phantom. This calculation also permits the analysis of the scattering sources/sinks within the linac and EPID, as well as the phantom and intervening air. Conclusions: This work challenges the assumption that scatter to and within an EPID can be accounted for using a simple, linear model. Simulations discussed here are intended to contribute to a fuller understanding of the contribution of scattered radiation to the EPID images that are used in dosimetry calculations. Acknowledgements: This work is funded by the NHMRC, through a project grant, and supported by the Queensland University of Technology (QUT) and the Royal Brisbane and Women's Hospital, Brisbane, Australia. The authors are also grateful to Elekta for the provision of manufacturing specifications which permitted the detailed simulation of their linear accelerators and amorphous-silicon electronic portal imaging devices. Computational resources and services used in this work were provided by the HPC and Research Support Group, QUT, Brisbane, Australia.