907 resultados para Robot navigation
Resumo:
The transformation from high level task specification to low level motion control is a fundamental issue in sensorimotor control in animals and robots. This thesis develops a control scheme called virtual model control which addresses this issue. Virtual model control is a motion control language which uses simulations of imagined mechanical components to create forces, which are applied through joint torques, thereby creating the illusion that the components are connected to the robot. Due to the intuitive nature of this technique, designing a virtual model controller requires the same skills as designing the mechanism itself. A high level control system can be cascaded with the low level virtual model controller to modulate the parameters of the virtual mechanisms. Discrete commands from the high level controller would then result in fluid motion. An extension of Gardner's Partitioned Actuator Set Control method is developed. This method allows for the specification of constraints on the generalized forces which each serial path of a parallel mechanism can apply. Virtual model control has been applied to a bipedal walking robot. A simple algorithm utilizing a simple set of virtual components has successfully compelled the robot to walk eight consecutive steps.
Resumo:
Since robots are typically designed with an individual actuator at each joint, the control of these systems is often difficult and non-intuitive. This thesis explains a more intuitive control scheme called Virtual Model Control. This thesis also demonstrates the simplicity and ease of this control method by using it to control a simulated walking hexapod. Virtual Model Control uses imagined mechanical components to create virtual forces, which are applied through the joint torques of real actuators. This method produces a straightforward means of controlling joint torques to produce a desired robot behavior. Due to the intuitive nature of this control scheme, the design of a virtual model controller is similar to the design of a controller with basic mechanical components. The ease of this control scheme facilitates the use of a high level control system which can be used above the low level virtual model controllers to modulate the parameters of the imaginary mechanical components. In order to apply Virtual Model Control to parallel mechanisms, a solution to the force distribution problem is required. This thesis uses an extension of Gardner`s Partitioned Force Control method which allows for the specification of constrained degrees of freedom. This virtual model control technique was applied to a simulated hexapod robot. Although the hexapod is a highly non-linear, parallel mechanism, the virtual models allowed text-book control solutions to be used while the robot was walking. Using a simple linear control law, the robot walked while simultaneously balancing a pendulum and tracking an object.
Resumo:
This thesis presents a perceptual system for a humanoid robot that integrates abilities such as object localization and recognition with the deeper developmental machinery required to forge those competences out of raw physical experiences. It shows that a robotic platform can build up and maintain a system for object localization, segmentation, and recognition, starting from very little. What the robot starts with is a direct solution to achieving figure/ground separation: it simply 'pokes around' in a region of visual ambiguity and watches what happens. If the arm passes through an area, that area is recognized as free space. If the arm collides with an object, causing it to move, the robot can use that motion to segment the object from the background. Once the robot can acquire reliable segmented views of objects, it learns from them, and from then on recognizes and segments those objects without further contact. Both low-level and high-level visual features can also be learned in this way, and examples are presented for both: orientation detection and affordance recognition, respectively. The motivation for this work is simple. Training on large corpora of annotated real-world data has proven crucial for creating robust solutions to perceptual problems such as speech recognition and face detection. But the powerful tools used during training of such systems are typically stripped away at deployment. Ideally they should remain, particularly for unstable tasks such as object detection, where the set of objects needed in a task tomorrow might be different from the set of objects needed today. The key limiting factor is access to training data, but as this thesis shows, that need not be a problem on a robotic platform that can actively probe its environment, and carry out experiments to resolve ambiguity. This work is an instance of a general approach to learning a new perceptual judgment: find special situations in which the perceptual judgment is easy and study these situations to find correlated features that can be observed more generally.
Resumo:
As AI has begun to reach out beyond its symbolic, objectivist roots into the embodied, experientialist realm, many projects are exploring different aspects of creating machines which interact with and respond to the world as humans do. Techniques for visual processing, object recognition, emotional response, gesture production and recognition, etc., are necessary components of a complete humanoid robot. However, most projects invariably concentrate on developing a few of these individual components, neglecting the issue of how all of these pieces would eventually fit together. The focus of the work in this dissertation is on creating a framework into which such specific competencies can be embedded, in a way that they can interact with each other and build layers of new functionality. To be of any practical value, such a framework must satisfy the real-world constraints of functioning in real-time with noisy sensors and actuators. The humanoid robot Cog provides an unapologetically adequate platform from which to take on such a challenge. This work makes three contributions to embodied AI. First, it offers a general-purpose architecture for developing behavior-based systems distributed over networks of PC's. Second, it provides a motor-control system that simulates several biological features which impact the development of motor behavior. Third, it develops a framework for a system which enables a robot to learn new behaviors via interacting with itself and the outside world. A few basic functional modules are built into this framework, enough to demonstrate the robot learning some very simple behaviors taught by a human trainer. A primary motivation for this project is the notion that it is practically impossible to build an "intelligent" machine unless it is designed partly to build itself. This work is a proof-of-concept of such an approach to integrating multiple perceptual and motor systems into a complete learning agent.
Resumo:
Augmented Reality (AR) is an emerging technology that utilizes computer vision methods to overlay virtual objects onto the real world scene so as to make them appear to co-exist with the real objects. Its main objective is to enhance the user’s interaction with the real world by providing the right information needed to perform a certain task. Applications of this technology in manufacturing include maintenance, assembly and telerobotics. In this paper, we explore the potential of teaching a robot to perform an arc welding task in an AR environment. We present the motivation, features of a system using the popular ARToolkit package, and a discussion on the issues and implications of our research.
Resumo:
El braç robot es va crear com a resposta a una necessitat de fabricació d’elements mitjançant la producció en cadena i en tasques que necessiten precisió. Hi ha, però, altres tipus de tasques les quals no són repetitives, ni poden ésser programades, que necessiten però ser controlades en tot moment per un ésser humà. Són activitats que han d’estar realitzades per un ésser humà, però que requereixen molta precisió, és per això que es creu necessari el disseny d’un prototipus de control d’un braç robot estàndard, que permeti a una persona el control total sobre aquest en temps real per a la realització d’una tasca no repetitiva i no programable prèviament. Pretenem, en el present projecte, dissenyar i construir un braç robot de 5 graus de llibertat, controlat des d’un PC mitjançant un microcontrolador PIC amb comunicació a través d’un bus USB. El robot serà governat des d’un PC a través d’un software de control específic
Resumo:
Aquest projecte pretén presentar de forma clara i detallada l’estructura i el funcionament del robot així com dels components que el conformen. Aquesta informació és de vital importància a l’hora de desenvolupar aplicacions per al robot. Un cop descrites les característiques del robot s’analitzaran les eines necessàries i/o disponibles per poder desenvolupar programari per cada nivell de la forma més senzilla i eficient possible. Posteriorment s’analitzaran els diferents nivells de programació i se’n contrastaran els avantatges i els inconvenients de cada un. Aquest anàlisi es començarà fent pel nivell més alt i anirà baixant amb la intenció de no entrar en nivells més baixos del necessari. Baixar un nivell en la programació suposa haver de crear aplicacions sempre compatibles amb els nivells superiors de forma que com més es baixa més augmenta la complexitat. A partir d’aquest anàlisi s’ha arribat a la conclusió que per tal d’aprofitar totes les prestacions del robot és precís arribar a programar en el nivell més baix del robot. Finalment l’objectiu és obtenir una sèrie de programes per cada nivell que permetin controlar el robot i fer-lo seguir senzilles trajectòries
Resumo:
El Grup de Visió per Computador i Robòtica (VICOROB) del departament d'Electrònica, Informàtica i Automàtica de la Universitat de Girona investiga en el camp de la robòtica submarina. Al CIRS (Centre d’Investigació en Robòtica Submarina), laboratori que forma part del grup VICOROB, el robot submarí Ictineu és la principal eina utilitzada per a desenvolupar els projectes de recerca. Recentment, el CIRS ha adquirit un nou sistema de sensors d' orientació basat en una unitat inercial i un giroscopi de fibra òptica. Aquest projecte pretén realitzar un estudi d' aquests dispositius i integrar-los al robot Ictineu. D' altra banda, aprofitant les característiques d’aquests sensors giroscopics i les mesures d' un sonar ja integrat al robot, es vol desenvolupar un sistema de localització capaç de determinar la posició del robot en el pla horitzontal de la piscina en temps real
Resumo:
Els objectius del projecte són: realitzar un intèrpret de comandes en VAL3 que rebi les ordres a través d’una connexió TCP/IP; realitzar una toolbox de Matlab per enviar diferents ordres mitjançant una connexió TCP/IP; adquirir i processar mitjançant Matlab imatges de la càmera en temps real i detectar la posició d’objectes artificials mitjançant la segmentació per color i dissenyar i realitzar una aplicació amb Matlab que reculli peces detectades amb la càmera. L’abast del projecte inclou: l’estudi del llenguatge de programació VAL3 i disseny de l’ intèrpret de comandes, l’estudi de les llibreries de Matlab per comunicació mitjançant TCP/IP, per l’adquisició d’imatges, pel processament d’imatges i per la programació en C; el disseny de la aplicació recol·lectora de peces i la implementació de: un intèrpret de comandes en VAL3, la toolbox pel control del robot STAUBLI en Matlab i la aplicació recol·lectora de peces mitjançant el processament d’imatges en temps real també en Matlab
Resumo:
L’objectiu d’aquest projecte/treball fi de carrera es estudiar els propulsors i el seu protocol de comunicació proporcionant informació útil a l’hora de dissenyar i construir el robot subaquàtic que implementi els propulsors
Resumo:
En el laboratori docent de robòtica s'utilitzen robots mòbils autònoms per treballar aspectes relacionats amb el posicionament, el control de trajectòries, la construcció de mapes... Es disposa de cinc robots comercials anomenats “e-puck”, que es caracteritzen per les seves dimensions reduïdes, dos motors i un conjunt complet de sensors. Aquests robots es programen en C++ utilitzant el simulador Webots, que disposa d'un conjunt de llibreries per programar el robot. També es disposa d'un entorn de proves on els robots es poden moure i evitar obstacles. Donat el poc temps que disposen els estudiants que realitzen pràctiques en aquest laboratori, és d'interès desenvolupar un software que contingui ja el posicionament del robot mitjançant odometria i també varis algoritmes de control de trajectòries. Per últim, en el laboratori es disposa de càmeres i targes d'adquisició de dades. Així doncs els objectius que s'han proposat per el projecte són: 1. Estudi de la documentació i software proporcinats pels fabricants del robot i de l'entorn Webots; 2. Programació del software de l'odometria i realització de proves per comprovar-ne la precisió; 3. Disseny, programació i verificació del software dels algoritmes de planificació de trajectòries. Realització d'experiments per a comprovar-ne el funcionament i 4. Disseny, programació i verificació d'un sistema de visió artificial que permeti conèixer la posició absoluta del robot en l'entorn
Resumo:
Microsoft Robotics Studio (MRS) és un entorn per a crear aplicacions per a robots utilitzant una gran varietat de plataformes hardware. Conté un entorn de simulació en el que es pot modelar i simular el moviment del robot. Permet també programar el robot, i executar-lo en l’entorn simulat o bé en el real. MRS resol la comunicació entre els diferents processos asíncrons que solen estar presents en el software de control d’un robot: processos per atendre sensors, actuadors, sistemes de control, comunicacions amb l’exterior,... MRS es pot utilitzar per modelar nous robots utilitzant components que ja estiguin disponibles en les seves llibreries, o també permet crear component nous. Per tal de conèixer en detall aquesta eina, seria interessant utilitzar-la per programa els robots e-pucks, uns robots mòbils autònoms de petites dimensions que disposen de dos motors i un complet conjunt de sensors. El que es vol és simular-los, realitzar un programa de control, realitzar la interfície amb el robot i comprovar el funcionament amb el robot real
Resumo:
The estimation of camera egomotion is a well established problem in computer vision. Many approaches have been proposed based on both the discrete and the differential epipolar constraint. The discrete case is mainly used in self-calibrated stereoscopic systems, whereas the differential case deals with a unique moving camera. The article surveys several methods for mobile robot egomotion estimation covering more than 0.5 million samples using synthetic data. Results from real data are also given
Resumo:
The purpose of this paper is to propose a Neural-Q_learning approach designed for online learning of simple and reactive robot behaviors. In this approach, the Q_function is generalized by a multi-layer neural network allowing the use of continuous states and actions. The algorithm uses a database of the most recent learning samples to accelerate and guarantee the convergence. Each Neural-Q_learning function represents an independent, reactive and adaptive behavior which maps sensorial states to robot control actions. A group of these behaviors constitutes a reactive control scheme designed to fulfill simple missions. The paper centers on the description of the Neural-Q_learning based behaviors showing their performance with an underwater robot in a target following task. Real experiments demonstrate the convergence and stability of the learning system, pointing out its suitability for online robot learning. Advantages and limitations are discussed
Resumo:
Reinforcement learning (RL) is a very suitable technique for robot learning, as it can learn in unknown environments and in real-time computation. The main difficulties in adapting classic RL algorithms to robotic systems are the generalization problem and the correct observation of the Markovian state. This paper attempts to solve the generalization problem by proposing the semi-online neural-Q_learning algorithm (SONQL). The algorithm uses the classic Q_learning technique with two modifications. First, a neural network (NN) approximates the Q_function allowing the use of continuous states and actions. Second, a database of the most representative learning samples accelerates and stabilizes the convergence. The term semi-online is referred to the fact that the algorithm uses the current but also past learning samples. However, the algorithm is able to learn in real-time while the robot is interacting with the environment. The paper shows simulated results with the "mountain-car" benchmark and, also, real results with an underwater robot in a target following behavior