998 resultados para Respiratory metabolism
Resumo:
In this study, hypothalamic activation was performed by dehydration-induced anorexia (DIA) and overnight food suppression (OFS) in female rats. The assessment of the hypothalamic response to these challenges by manganese-enhanced MRI showed increased neuronal activity in the paraventricular nuclei (PVN) and lateral hypothalamus (LH), both known to be areas involved in the regulation of food intake. The effects of DIA and OFS were compared by generating T-score maps. Increased neuronal activation was detected in the PVN and LH of DIA rats relative to OFS rats. In addition, the neurochemical profile of the PVN and LH were measured by (1) H MRS at 14.1T. Significant increases in metabolite levels were measured in DIA and OFS relative to control rats. Statistically significant increases in γ-aminobutyric acid were found in DIA (p=0.0007) and OFS (p<0.001) relative to control rats. Lactate increased significantly in DIA (p=0.03), but not in OFS, rats. This work shows that manganese-enhanced MRI coupled to (1) H MRS at high field is a promising noninvasive method for the investigation of the neural pathways and mechanisms involved in the control of food intake, in the autonomic and endocrine control of energy metabolism and in the regulation of body weight.
Resumo:
β-adrenergic receptor activation promotes brown adipose tissue (BAT) β-oxidation and thermogenesis by burning fatty acids during uncoupling respiration. Oleoylethanolamide (OEA) can inhibit feeding and stimulate lipolysis by activating peroxisome proliferator-activating receptor-α (PPARα) in white adipose tissue (WAT). Here we explore whether PPARα activation potentiates the effect of β3-adrenergic stimulation on energy balance mediated by the respective agonists OEA and CL316243. The effect of this pharmacological association on feeding, thermogenesis, β-oxidation, and lipid and cholesterol metabolism in epididymal (e)WAT was monitored. CL316243 (1 mg/kg) and OEA (5 mg/kg) co-administration over 6 days enhanced the reduction of both food intake and body weight gain, increased the energy expenditure and reduced the respiratory quotient (VCO2/VO2). This negative energy balance agreed with decreased fat mass and increased BAT weight and temperature, as well as with lowered plasma levels of triglycerides, cholesterol, nonessential fatty acids (NEFAs), and the adipokines leptin and TNF-α. Regarding eWAT, CL316243 and OEA treatment elevated levels of the thermogenic factors PPARα and UCP1, reduced p38-MAPK phosphorylation, and promoted brown-like features in the white adipocytes: the mitochondrial (Cox4i1, Cox4i2) and BAT (Fgf21, Prdm16) genes were overexpressed in eWAT. The enhancement of the fatty-acid β-oxidation factors Cpt1b and Acox1 in eWAT was accompanied by an upregulation of de novo lipogenesis and reduced expression of the unsaturated-fatty-acid-synthesis enzyme gene, Scd1. We propose that the combination of β-adrenergic and PPARα receptor agonists promotes therapeutic adipocyte remodelling in eWAT, and therefore has a potential clinical utility in the treatment of obesity.
Resumo:
Viruses are the major contributors to the morbidity and mortality of upper and lower acute respiratory infections (ARIs) for all age groups. The aim of this study was to determine the frequencies for a large range of respiratory viruses using a sensitive molecular detection technique in specimens from outpatients of all ages with ARIs. Nasopharyngeal aspirates were obtained from 162 individuals between August 2007-August 2009. Twenty-three pathogenic respiratory agents, 18 respiratory viruses and five bacteria were investigated using multiplex real-time reverse transcriptase polymerase chain reaction (RT-PCR) and indirect immunofluorescence assay (IIF). Through IIF, 33 (20.4%) specimens with respiratory virus were recognised, with influenza virus representing over half of the positive samples. Through a multiplex real-time RT-PCR assay, 88 (54.3%) positive samples were detected; the most prevalent respiratory viral pathogens were influenza, human rhinovirus and respiratory syncytial virus (RSV). Six cases of viral co-detection were observed, mainly involving RSV. The use of multiplex real-time RT-PCR increased the viral detection by 33.9% and revealed a larger number of respiratory viruses implicated in ARI cases, including the most recently described respiratory viruses [human bocavirus, human metapneumovirus, influenza A (H1N1) pdm09 virus, human coronavirus (HCoV) NL63 and HCoV HKU1].
Resumo:
Sphingomonas wittichii RW1 is a bacterium isolated for its ability to degrade the xenobiotic compounds dibenzodioxin and dibenzofuran (DBF). A number of genes involved in DBF degradation have been previously characterized, such as the dxn cluster, dbfB, and the electron transfer components fdx1, fdx3, and redA2. Here we use a combination of whole genome transcriptome analysis and transposon library screening to characterize RW1 catabolic and other genes implicated in the reaction to or degradation of DBF. To detect differentially expressed genes upon exposure to DBF, we applied three different growth exposure experiments, using either short DBF exposures to actively growing cells or growing them with DBF as sole carbon and energy source. Genome-wide gene expression was examined using a custom-made microarray. In addition, proportional abundance determination of transposon insertions in RW1 libraries grown on salicylate or DBF by ultra-high throughput sequencing was used to infer genes whose interruption caused a fitness loss for growth on DBF. Expression patterns showed that batch and chemostat growth conditions, and short or long exposure of cells to DBF produced very different responses. Numerous other uncharacterized catabolic gene clusters putatively involved in aromatic compound metabolism increased expression in response to DBF. In addition, only very few transposon insertions completely abolished growth on DBF. Some of those (e.g., in dxnA1) were expected, whereas others (in a gene cluster for phenylacetate degradation) were not. Both transcriptomic data and transposon screening suggest operation of multiple redundant and parallel aromatic pathways, depending on DBF exposure. In addition, increased expression of other non-catabolic genes suggests that during initial exposure, S. wittichii RW1 perceives DBF as a stressor, whereas after longer exposure, the compound is recognized as a carbon source and metabolized using several pathways in parallel.
Resumo:
MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression post-transcriptionally. MiRNAs are implicated in various biological processes associated with obesity, including adipocyte differentiation and lipid metabolism. We used a neuronal-specific inhibition of miRNA maturation in adult mice to study the consequences of miRNA loss on obesity development. Camk2a-CreERT2 (Cre+) and floxed Dicer (Dicerlox/lox) mice were crossed to generate tamoxifen-inducible conditional Dicer knockouts (cKO). Vehicle- and/or tamoxifen-injected Cre+;Dicerlox/lox and Cre+;Dicer+/+ served as controls. Four cohorts were used to a) measure body composition, b) follow food intake and body weight dynamics, c) evaluate basal metabolism and effects of food deprivation, and d) assess the brain transcriptome consequences of miRNA loss. cKO mice developed severe obesity and gained 18 g extra weight over the 5 weeks following tamoxifen injection, mainly due to increased fat mass. This phenotype was highly reproducible and observed in all 38 cKO mice recorded and in none of the controls, excluding possible effects of tamoxifen or the non-induced transgene. Development of obesity was concomitant with hyperphagia, increased food efficiency, and decreased activity. Surprisingly, after reaching maximum body weight, obese cKO mice spontaneously started losing weight as rapidly as it was gained. Weight loss was accompanied by lowered O2-consumption and respiratory-exchange ratio. Brain transcriptome analyses in obese mice identified several obesity-related pathways (e.g. leptin, somatostatin, and nemo-like kinase signaling), as well as genes involved in feeding and appetite (e.g. Pmch, Neurotensin) and in metabolism (e.g. Bmp4, Bmp7, Ptger1, Cox7a1). A gene cluster with anti-correlated expression in the cerebral cortex of post-obese compared to obese mice was enriched for synaptic plasticity pathways. While other studies have identified a role for miRNAs in obesity, we here present a unique model that allows for the study of processes involved in reversing obesity. Moreover, our study identified the cortex as a brain area important for body weight homeostasis.
Resumo:
During the last decade, the development of "bedside" investigative methods, including indirect calorimetry, nutritional balance and stable isotope techniques, have given a new insight into energy and protein metabolism in the neonates. Neonates and premature infants especially, create an unusual opportunity to study the metabolic adaptation to extrauterine life because their physical environment can be controlled, their energy intake and energy expenditure can be measured and the link between their protein metabolism and the energetics of their postnatal growth can be assessed with accuracy. Thus, relatively abstract physiological concepts such as the postnatal timecourse of heat production, energy cost of growth, energy cost of physical activity, thermogenic effect of feeding, efficiency of protein gain, metabolic cost of protein gain and protein turnover have been quantified. These results show that energy expenditure and heat production rates increase postnatally from average values of 40 kcal/kgxday during the first week to 60 kcal/kgxday in the third week. This increase parellels nutritional intakes as well as the rate of weight gain. The thermogenic effect of feeding and the physical activity are relatively low and account only for an average of 5% each of the total heat production. The cost of protein turnover is the highest energy demanding process. The fact that nitrogen balance becomes positive within 72 hours after birth places the newborn in a transitional situation of dissociated balance between energy and protein metabolism: dry body mass and fat decrease while there is a gain in protein and increase in supine length. This particular situation ends during the second postnatal week and soon thereafter the rate of weight gain matches the statural growth. The goals of the following review are to summarize recent data on the physiological aspects of energy and protein metabolism directly related to the extrauterine adaptation, to describe experimental approaches which recently were adapted to the newborns in order to get "bedside results" and to discuss how far these results can help everyday's neonatal practice.
Resumo:
Human respiratory syncytial virus (HRSV) is an important respiratory pathogens among children between zero-five years old. Host immunity and viral genetic variability are important factors that can make vaccine production difficult. In this work, differences between biological clones of HRSV were detected in clinical samples in the absence and presence of serum collected from children in the convalescent phase of the illness and from their biological mothers. Viral clones were selected by plaque assay in the absence and presence of serum and nucleotide sequences of the G2 and F2 genes of HRSV biological clones were compared. One non-synonymous mutation was found in the F gene (Ile5Asn) in one clone of an HRSV-B sample and one non-synonymous mutation was found in the G gene (Ser291Pro) in four clones of the same HRSV-B sample. Only one of these clones was obtained after treatment with the child's serum. In addition, some synonymous mutations were determined in two clones of the HRSV-A samples. In conclusion, it is possible that minor sequences could be selected by host antibodies contributing to the HRSV evolutionary process, hampering the development of an effective vaccine, since we verify the same codon alteration in absence and presence of human sera in individual clones of BR-85 sample.
Resumo:
INTRODUCTION For critically patients, enteral immunonutrition results in notable reductions in infections and in length of stay in hospital, but not on mortality, raising the question as to whether this relate to the heterogeneous nature of critically ill patients or to the absence of the altered absorption of specific nutrients within the immunonutrient mix (e.g. iron). Immune-associated functional iron deficiency (FID) is not only one of the many causes or anaemia in the critically ill, but also a cause of inappropriate immune response, leading to a longer duration of episodes of systemic inflammatory response syndrome and poor outcome. OBJECTIVE This prospective cross-sectional study was undertaken to assess the prevalence of FID in critically ill patients during their stay in intensive care (ICU) in order to find the more appropriate population of patients that can benefit from iron therapy. METHOD Full blood cell counts, including reticulocytes (RETIC), serum iron (SI), transferring levels (TRF) and saturation (satTRF), serum TFR receptor (sTfR), ferritin (FRT) and C-reactive protein (CRP) were measured in venous blood samples from 131 random patients admitted to the ICU for at least 24 h (Length of ICU stay, LIS; min: 1 day; max: 38 days). RESULTS Anaemia (Hb < 12 g/dL) was present in 76% of the patients (Hb < 10 g/dL in 33%), hypoferremia (SI < 45 microg/dl) in 69%; satTRF < 20% in 53%; FRT < 100 ng/mL in 23%; sTfR > 2.3 mg/dL in 13%; and CRP > 0.5 mg/dL in 88%. Statistically significant correlations (r of Pearson; *p < 0.05, **p < 0.01) were obtained for serum CRP levels and WBC**, Hb*, TRF**, satTRF*, and FRT**. There was also a strong correlation between TRF and FRT (-0.650**), but not between FRT and satTRF or SI. LIS correlated with Hb*, CRP**, TRF*, satTRF* and FRT**. CONCLUSIONS A large proportion of critically ill patients admitted to the ICU presented the typical functional iron deficiency (FID) of acute inflammation-related anaemia (AIRA). This FID correlates with the inflammatory status and the length of stay at the ICU. However, 21% of the ICU patients with AIRA had an associated real iron deficiency (satTRF < 20; FRT < 100 and sTfR > 2.3). Since oral supplementation of iron seems to be ineffective, all these patients might benefit of iv iron therapy for correction of real or functional iron deficiency, which in turn might help to ameliorate their inflammatory status.
Temsirolimus in overtreated metastatic renal cancer with subsequent use of sunitinib: A case report.
Resumo:
During the last decade, we have been developing new therapeutic strategies for the treatment of renal cancer, based on knowledge derived from molecular biology. We report a case of long-term renal metastatic cancer progression despite therapy with sunitinib and interleukin, which are the most active drugs in renal cancer. Disease stabilization for 58 weeks was achieved upon sequential use of temsirolimus, following the occurrence of disease progression during angiogenic therapy. The patient demonstrated excellent tolerance without marked symptoms for 10 months. Hypothyroidism and mumps-related adverse events were present. The survival time from diagnosis to lung metastasis was 8 years. Thus, this case demonstrates promising therapeutic effects of the sequential use of tyrosine kinase inhibitors (TKIs) and mammalian target of rapamycin (mTOR) inhibitors during different stages of the disease.
Resumo:
Hypersensitivity pneumonitis (HP) is an immunologically mediated lung disease due to the repetitive inhalation of antigens. Most new cases arise from residential exposures, notably to birds, and are thus more difficult to recognise. The present authors report a 59-yr-old male who complained of dyspnoea and cough while being treated with amiodarone. Pulmonary function tests revealed restriction and obstruction with low diffusing lung capacity for carbon monoxide and partial pressure of oxygen. A high-resolution computed tomography chest scan and bronchoalveolar lavage showed diffuse bilateral ground-glass attenuation and lymphocytic alveolitis, respectively. Initial diagnosis was amiodarone pulmonary toxicity, but because of a rapidly favourable evolution, this diagnosis was questioned. A careful environmental history revealed a close contact with lovebirds shortly before the onset of symptoms. Precipitins were strongly positive against lovebird droppings, but were negative against other avian antigens. The patient was diagnosed with hypersensitivity pneumonitis to lovebirds. Avoidance of lovebirds and steroid treatment led to rapid improvement. The present observation identifies a new causative agent for hypersensitivity pneumonitis and highlights the importance of a thorough environmental history and of searching for precipitins against antigens directly extracted from the patient's environment. These two procedures should allow a more precise classification of some cases of pneumonitis, and thus might avoid progression of active undiagnosed hypersensitivity pneumonitis to irreversible fibrosis or emphysema.
Resumo:
The increasing use of chest CT imaging in medical practice rises the likelihood of the general practitioner to be confronted with cases of interstitial lung disease. Respiratory bronchiolitis (RB) and respiratory bronchiolitis-associated interstitial lung disease (RB-ILD) are two smoking-related lung damages that may have important implications for the patient's management. The authors present in this paper a review of current knowledge of the epidemiology, clinical features, prognosis, and treatment options of RB and RB-ILD.
Resumo:
RÉSUMÉ : Le traitement répété à la phencyclidine (PCP), un bloqueur du récepteur NMDA (NMDAR), reproduit chez les rongeurs une partie de la symptomatologie typique de la schizophrénie. Le blocage prolongé du NMDAR par la PCP mime une hypofunction du NMDAR, une des principales altérations supposées exister dans les cerveaux des patients schizophréniques. Le but de notre étude était d'examiner les conséquences neurochimiques, métaboliques et fonctionnelles du traitement répété à la phencyclidine in vivo, au niveau du cortex préfrontal (cpf), une région cérébrale qui joue un rôle dans les déficits cognitifs observés chez les patients schizophréniques. Pour répondre à cette question, les rats ou les souris ont reçu chaque jour une injection soit de PCP (5 mg/kg), soit de solution saline, pendant 7 ou 14 jours. Les animaux ont ensuite été sacrifiés au moins 24 heures après le dernier traitement. Des tranches aiguës du cpf ont été préparées rapidement, puis stimulées avec une concentration élevée de KCI, de manière à induire une libération de glutamate à partir des terminaisons synaptiques excitatrices. Les résultats montrent que les tranches du cpf des animaux traités à la PCP ont libéré une quantité de glutamate significativement inférieure par rapport à celles des animaux contrôle. Ce déficit de libération a persisté 72 heures après la fin du traitement, tandis qu'il n'était pas observé dans le cortex visuel primaire, une autre région corticale. En outre, le traitement avec des antipsychotiques, l'halopéridol ou l'olanzapine, a supprimé le déficit induit par la PCP. Le même déficit de libération a été remarqué sur des synaptosomes obtenus à partir du cpf des animaux traités à la phenryclidine. Cette observation indique que la PCP induit une modification plastique adaptative du mécanisme qui contrôle la libération du glutamate dans les terminaisons synaptiques. Nous avons découvert que cette modification implique la sous-régulation d'un NMDAR présynaptique, qui serait doué d'un rôle d'autorécepteur stimulateur de la libération du glutamate. Grâce à des tests comportementaux conduits en parallèle et réalisés pour évaluer la fonctionnalité du cpf, nous avons observé chez les souris traitées à la PCP une flexibilité comportementale réduite lors d'un test de discrimination de stimuli visuels/tactiles. Le déficit cognitif était encore présent 4 jours après la dernière administration de PCP. La technique de l'autoradiographie quantitative du [14C]2-deoxyglucose a permis d'associer ce déficit à une réduction de l'activité métabolique cérébrale pendant le déroulement du test, particulièrement au niveau du cpf. Dans l'ensemble, nos résultats suggèrent que le blocage prolongé du NMDAR lors de l'administration répétée de PCP produit un déficit de libération du glutamate au niveau des terminaisons synaptiques excitatrices du cpf. Un tel déficit pourrait être provoqué par la sousrégulation d'un NMDAR présynaptique, qui aurait une fonction de stimulateur de libération; la transmission excitatrice du cpf s'en trouverait dans ce cas réduite. Ce résultat est en ligne avec l'activité métabolique et fonctionnelle réduite du cpf et l'observation de déficits cognitifs induits lors de l'administration de la PCP. ABSTRACT : Sub-chronic treatment with phencyclidine (PCP), an NMDA receptor (NMDAR) channel blocker, reproduces in rodents part of the symptomatology associated to schizophrenia in humans. Prolonged pharmacological blockade of NMDAR with PCP mimics NMDAR hypofunction, one of the main alterations thought to take place in the brains of schizophrenics. Our study was aimed at investigating the neurochemical, metabolic and behavioral consequences of repeated PCP administration in vivo, focusing on the functioning of the prefrontal cortex (pfc), a brain region highly relevant for the cognitive deficits observed in schizophrenic patients. Rats or mice received a daily administration of either PCP (5 mg/kg) or saline for 7 or 14 days. At least 24 hours after the last treatment the animals were sacrificed. Acute slices of the pfc were quickly prepared and challenged with high KCl to induce synaptic glutamate release. Pfc slices from PCP-treated animals released significantly less glutamate than slices from salinetreated animals. The deficit persisted 72 hours after the end of the treatment, while it was not observed in another cortical region: the primary visual cortex. Interestingly, treatment with antipsychotic drugs, either haloperidol or olanzapine, reverted the glutamate release defect induced by PCP treatment. The same release defect was observed in synaptosomes prepared from the pfc of PCP-treated animals, indicating that PCP induces a plastic adaptive change in the mechanism controlling glutamate release in the glutamatergic terminals. We discovered that such change most likely involves the down-regulation of a newly identified, pre-synaptic NMDAR with stimulatory auto-receptor function on glutamate release. In parallel sets of behavioral experiments challenging pfc function, mice sub-chronically treated with PCP displayed reduced behavioral flexibility (reversal learning) in a visual/tactile-cued discrimination task. The cognitive deficit was still evident 4 days after the last PCP administration and was associated to reduced brain metabolic activity during the performance of the behavioral task, notably in the pfc, as determined by [14C]2-deoxyglucose quantitative autoradiography. Clverall, our findings suggest that prolonged NMDAR blockade by repeated PCP administration results in a defect of glutamate release from excitatory afferents in the pfc, possibly ascribed to down-regulation of apre-synaptic stimulatory NMDAR. Deficient excitatory neurotransmission in the pfc is consistent with the reduced metabolic and functional activation of this area and the observed PCP-induced cognitive deficits.
Resumo:
Allergy to nonsteroidal antiinflammatory drugs (NSAIDs) is a very common affliction, especially among patients with asthma and chronic urticaria. These reactions are most often of a non-immunological nature but related to pharmacologic intolerance and linked to arachidonic acid metabolism and leukotriene release. Therefore, crossed reactions implying all non-selective and semi-selective NSAIDs constitute the rule, especially during respiratory reactions to NSAIDs and for patients with chronic urticaria. In isolated acute urticaria, crossed reactions are difficult to predict so caution is necessary. Tolerance induction is possible, especially when aspirin has to be administered in small doses as antiplatelet agent. Finally, acetaminophen and selective NSAIDs as celecoxib are well tolerated by most of these patients. L'allergie aux anti-inflammatoires non stéroïdiens (AINS) est très fréquente, en particulier chez les asthmatiques ou dans l'urticaire chronique. Il s'agit en général de réactions non immunologiques, mais dues à une intolérance pharmacologique liée au métabolisme de l'acide arachidonique et à la formation de leucotriènes. Ainsi, les réactions croisées impliquant tous les AINS non sélectifs et semi-sélectifs sont la règle, surtout lors de réactions respiratoires aux AINS et dans l'urticaire chronique. Lors d'urticaire aiguë isolée, les réactions croisées sont difficiles à prédire, ainsi la prudence s'impose. Une induction de tolérance est possible, en particulier lorsque l'aspirine est nécessaire à dose faible, comme antiagrégant plaquettaire. Enfin, le paracétamol et les AINS sélectifs sont supportés par la grande majorité de ces patients.
Resumo:
Respiratory syncytial virus (RSV) infection is the leading cause of hospitalisation for respiratory diseases among children under 5 years old. The aim of this study was to analyse RSV seasonality in the five distinct regions of Brazil using time series analysis (wavelet and Fourier series) of the following indicators: monthly positivity of the immunofluorescence reaction for RSV identified by virologic surveillance system, and rate of hospitalisations per bronchiolitis and pneumonia due to RSV in children under 5 years old (codes CID-10 J12.1, J20.5, J21.0 and J21.9). A total of 12,501 samples with 11.6% positivity for RSV (95% confidence interval 11 - 12.2), varying between 7.1 and 21.4% in the five Brazilian regions, was analysed. A strong trend for annual cycles with a stable stationary pattern in the five regions was identified through wavelet analysis of the indicators. The timing of RSV activity by Fourier analysis was similar between the two indicators analysed and showed regional differences. This study reinforces the importance of adjusting the immunisation period for high risk population with the monoclonal antibody palivizumab taking into account regional differences in seasonality of RSV.
Resumo:
Background Coronary microvascular dysfunction (CMD) is associated with cardiovascular events in type 2 diabetes mellitus (T2DM). Optimal glycaemic control does not always preclude future events. We sought to assess the effect of the current target of HBA1c level on the coronary microcirculatory function and identify predictive factors for CMD in T2DM patients. Methods We studied 100 patients with T2DM and 214 patients without T2DM. All of them with a history of chest pain, non-obstructive angiograms and a direct assessment of coronary blood flow increase in response to adenosine and acetylcholine coronary infusion, for evaluation of endothelial independent and dependent CMD. Patients with T2DM were categorized as having optimal (HbA1c < 7 %) vs. suboptimal (HbA1c ≥ 7 %) glycaemic control at the time of catheterization. Results Baseline characteristics and coronary endothelial function parameters differed significantly between T2DM patients and control group. The prevalence of endothelial independent CMD (29.8 vs. 39.6 %, p = 0.40) and dependent CMD (61.7 vs. 62.2 %, p = 1.00) were similar in patients with optimal vs. suboptimal glycaemic control. Age (OR 1.10; CI 95 % 1.04–1.18; p < 0.001) and female gender (OR 3.87; CI 95 % 1.45–11.4; p < 0.01) were significantly associated with endothelial independent CMD whereas glomerular filtrate (OR 0.97; CI 95 % 0.95–0.99; p < 0.05) was significantly associated with endothelial dependent CMD. The optimal glycaemic control was not associated with endothelial independent (OR 0.60, CI 95 % 0.23–1.46; p 0.26) or dependent CMD (OR 0.99, CI 95 % 0.43–2.24; p = 0.98). Conclusions The current target of HBA1c level does not predict a better coronary microcirculatory function in T2DM patients. The appropriate strategy for prevention of CMD in T2DM patients remains to be addressed. Keywords: Endothelial dysfunction; Diabetes mellitus; Coronary microcirculation