969 resultados para Remote-sensing Data


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple method for efficient inversion of arbitrary radiative transfer models for image analysis is presented. The method operates by representing the shape of the function that maps model parameters to spectral reflectance by an adaptive look-up tree (ALUT) that evenly distributes the discretization error of tabulated reflectances in spectral space. A post-processing step organizes the data into a binary space partitioning tree that facilitates an efficient inversion search algorithm. In an example shallow water remote sensing application, the method performs faster than an implementation of previously published methodology and has the same accuracy in bathymetric retrievals. The method has no user configuration parameters requiring expert knowledge and minimizes the number of forward model runs required, making it highly suitable for routine operational implementation of image analysis methods. For the research community, straightforward and robust inversion allows research to focus on improving the radiative transfer models themselves without the added complication of devising an inversion strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ground surface temperature is one of the key parameters that determine the thermal regime of permafrost soils in arctic regions. Due to remoteness of most permafrost areas, monitoring of the land surface temperature (LST) through remote sensing is desirable. However, suitable satellite platforms such as MODIS provide spatial resolutions, that cannot resolve the considerable small-scale heterogeneity of the surface conditions characteristic for many permafrost areas. This study investigates the spatial variability of summer surface temperatures of high-arctic tundra on Svalbard, Norway. A thermal imaging system mounted on a mast facilitates continuous monitoring of approximately 100 x 100 m of tundra with a wide variability of different surface covers and soil moisture conditions over the entire summer season from the snow melt until fall. The net radiation is found to be a control parameter for the differences in surface temperature between wet and dry areas. Under clear-sky conditions in July, the differences in surface temperature between wet and dry areas reach up to 10K. The spatial differences reduce strongly in weekly averages of the surface temperature, which are relevant for the soil temperature evolution of deeper layers. Nevertheless, a considerable variability remains, with maximum differences between wet and dry areas of 3 to 4K. Furthermore, the pattern of snow patches and snow-free areas during snow melt in July causes even greater differences of more than 10K in the weekly averages. Towards the end of the summer season, the differences in surface temperature gradually diminish. Due to the pronounced spatial variability in July, the accumulated degree-day totals of the snow-free period can differ by more than 60% throughout the study area. The terrestrial observations from the thermal imaging system are compared to measurements of the land surface temperature from the MODIS sensor. During periods with frequent clear-sky conditions and thus a high density of satellite data, weekly averages calculated from the thermal imaging system and from MODIS LST agree within less than 2K. Larger deviations occur when prolonged cloudy periods prevent satellite measurements. Futhermore, the employed MODIS L2 LST data set contains a number of strongly biased measurements, which suggest an admixing of cloud top temperatures. We conclude that a reliable gap filling procedure to moderate the impact of prolonged cloudy periods would be of high value for a future LST-based permafrost monitoring scheme. The occurrence of sustained subpixel variability of the summer surface temperature is a complicating factor, whose impact needs to be assessed further in conjunction with other spatially variable parameters such as the snow cover and soil properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The classification of airborne lidar data is a relevant task in different disciplines. The information about the geometry and the full waveform can be used in order to classify the 3D point cloud. In Wadden Sea areas the classification of lidar data is of main interest for the scientific monitoring of coastal morphology and habitats, but it becomes a challenging task due to flat areas with hardly any discriminative objects. For the classification we combine a Conditional Random Fields framework with a Random Forests approach. By classifying in this way, we benefit from the consideration of context on the one hand and from the opportunity to utilise a high number of classification features on the other hand. We investigate the relevance of different features for the lidar points in coastal areas as well as for the interaction of neighbouring points.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes seagrass species and percentage cover point-based field data sets derived from georeferenced photo transects. Annually or biannually over a ten year period (2004-2015) data sets were collected using 30-50 transects, 500-800 m in length distributed across a 142 km**2 shallow, clear water seagrass habitat, the Eastern Banks, Moreton Bay, Australia. Each of the eight data sets include seagrass property information derived from approximately 3000 georeferenced, downward looking photographs captured at 2-4 m intervals along the transects. Photographs were manually interpreted to estimate seagrass species composition and percentage cover (Coral Point Count excel; CPCe). Understanding seagrass biology, ecology and dynamics for scientific and management purposes requires point-based data on species composition and cover. This data set, and the methods used to derive it are a globally unique example for seagrass ecological applications. It provides the basis for multiple further studies at this site, regional to global comparative studies, and, for the design of similar monitoring programs elsewhere.