983 resultados para Receptors, Natural Killer Cell
Resumo:
CONTEXT Relationships between mind and body have gradually become accepted. Yogic practices cause modulation of the immune system. Transcendental meditation (TM) is a specific form of mantra meditation. We reported previously different plasma levels of catecholamines and pituitary hormones in TM practitioners comparing with a control group, and patterns of the daytime secretion of these hormones different from those normally described. AIMS The aim of the following study is to evaluate the immune system in these meditation practitioners, by determining leukocytes and lymphocytes subsets. METHODS TM group consisted of 19 subjects who regularly practice either TM or the more advanced Sidhi-TM technique. A control group consisted of 16 healthy subjects who had not previously used any relaxation technique. Total leukocytes, granulocytes, lymphocytes and monocytes were counted by an automated quantitative hematology analyzer, whereas lymphocytes subsets were determined by flow cytometry. Samples were taken from each subject at 0900 h after an overnight fast. RESULTS The results indicated that the TM group had higher values than the control group in CD3+CD4-CD8+ lymphocytes (P < 0.05), B lymphocytes (P < 0.01) and natural killer cells (P < 0.01), whereas CD3+CD4+CD8- lymphocytes showed low levels in meditation practitioners (P < 0.001). No significant differences were observed in total leukocytes, granulocytes, monocytes, total lymphocytes or CD3+ lymphocytes comparing both groups. CONCLUSIONS The technique of meditation studied seems to have a significant effect on immune cells, manifesting in the different circulating levels of lymphocyte subsets analyzed. The significant effect of TM on the neuroendocrine axis and its relationship with the immune system may partly explain our results.
Resumo:
Soluble peptide/MHC-class-I (pMHC) multimers have recently emerged as unique reagents for the study of specific interactions between the pMHC complex and the TCR. Here, we assessed the relative binding efficiency of a panel of multimers incorporating single-alanine-substituted variants of the tumor-antigen-derived peptide MAGE-A10(254-262) to specific CTL clones displaying different functional avidity. For each individual clone, the efficiency of binding of multimers incorporating MAGE-A10 peptide variants was, in most cases, in good although not linear correlation with the avidity of recognition of the corresponding variant. In addition, we observed two types of discrepancies between efficiency of recognition and multimer binding. First, for some peptide variants, efficient multimer binding was detected in the absence of measurable effector functions. Some of these peptide variants displayed antagonist activity. Second, when comparing different clones we found clear discrepancies between the dose of peptide required to obtain half-maximal lysis in CTL assays and the binding efficiency of the corresponding multimers. These discrepancies, however, were resolved when the differential stability of the TCR/pMHC complexes was determined. For individual clones, decreased recognition correlated with increased TCR/pMHC off-rate. TCR/pMHC complexes formed by antagonist ligands displayed off-rates faster than those of TCR/pMHC complexes formed with weak agonists. In addition, when comparing different clones, the efficiency of multimer staining correlated better with relative multimer off-rates than with half-maximal lysis values. Altogether, the data presented here reconcile and extend our previous results on the impact of the kinetics of interaction of TCR with pMHC complexes on multimer binding and underline the crucial role of TCR/pMHC off-rates for the functional outcome of such interactions.
Resumo:
Using H-2Kd-restricted CTL clones, which are specific for a photoreactive derivative of the Plasmodium berghei circumsporozoite peptide PbCS(252-260) (SYIPSAEKI) and permit assessment of TCR-ligand interactions by TCR photoaffinity labeling, we have previously identified several peptide derivative variants for which TCR-ligand binding and the efficiency of Ag recognition deviated by fivefold or more. Here we report that the functional CTL response (cytotoxicity and IFN-gamma production) correlated with the rate of TCR-ligand complex dissociation, but not the avidity of TCR-ligand binding. While peptide antagonists exhibited very rapid TCR-ligand complex dissociation, slightly slower dissociation was observed for strong agonists. Conversely and surprisingly, weak agonists typically displayed slower dissociation than the wild-type agonists. Acceleration of TCR-ligand complex dissociation by blocking CD8 participation in TCR-ligand binding increased the efficiency of Ag recognition in cases where dissociation was slow. In addition, permanent TCR engagement by TCR-ligand photocross-linking completely abolished sustained intracellular calcium mobilization, which is required for T cell activation. These results indicate that the functional CTL response depends on the frequency of serial TCR engagement, which, in turn, is determined by the rate of TCR-ligand complex dissociation.
Resumo:
During T cell development in the thymus, T cell receptor (TCR) alpha, beta, gamma, and delta genes are rearranged and expressed. TCR rearrangement strictly depends upon the coordinate activity of two recombinase activating genes, Rag-1 and Rag-2. In this study we have followed the expression of these genes at different stages of intrathymic development. The results indicate that there are two periods of high Rag-1 and Rag-2 mRNA expression. The first wave peaks early at the CD25+CD4-CD8-CD3- stage of development and coincides with the initial appearance of transcripts derived from fully rearranged TCR beta, gamma, and delta genes, whereas the second wave occurs later at the CD4+CD8+ stage coincident with full-length TCR alpha mRNA expression. Active downregulation of Rag-1 and Rag-2 mRNA expression appears to occur in vivo between the two peaks of recombinase activity. This phenomenon can be mimicked in vitro in response to artificial stimuli such as phorbol myristate acetate and calcium ionophore. Collectively our data suggest that recombinase expression is actively regulated during early thymus development independently of cell surface expression of a mature heterodimeric TCR protein complex.
Resumo:
Although it is well established that early expression of TCRbeta transgenes in the thymus leads to efficient inhibition of both endogenous TCRbeta and TCRgamma rearrangement (also known as allelic and "isotypic" exclusion, respectively) the role of pTalpha in these processes remains controversial. Here, we have systematically re-evaluated this issue using three independent strains of TCRbeta-transgenic mice that differ widely in transgene expression levels, and a sensitive intracellular staining assay that detects endogenous TCRVbeta expression in individual immature thymocytes. In the absence of pTalpha, both allelic and isotypic exclusion were reversed in all three TCRbeta-transgenic strains, clearly demonstrating a general requirement for pre-TCR signaling in the inhibition of endogenous TCRbeta and TCRgamma rearrangement. Both allelic and isotypic exclusion were pTalpha dose dependent when transgenic TCRbeta levels were subphysiological. Moreover, pTalpha-dependent allelic and isotypic exclusion occurred in both alphabeta and gammadelta T cell lineages, indicating that pre-TCR signaling can potentially be functional in gammadelta precursors. Finally, levels of endogenous RAG1 and RAG2 were not down-regulated in TCRbeta-transgenic immature thymocytes undergoing allelic or isotypic exclusion. Collectively, our data reveal a critical but lineage-nonspecific role for pTalpha in mediating both allelic and isotypic exclusion in TCRbeta-transgenic mice.
Resumo:
The nature of the mysterious minor lymphocyte stimulating (Mls) antigens has recently been clarified. These molecules which were key elements for our current understanding of immune tolerance, have a strong influence on the mouse immune system and are encoded by the open reading frame (orf) of endogenous and exogenous mouse mammary tumor viruses (MMTV's). The knowledge that these antigens are encoded by cancerogenic retroviruses opens an interdisciplinary approach for understanding the mechanisms of immune responses and immune tolerance, retroviral carcinogenesis, and retroviral strategies for infection.
Resumo:
ZFP36L1 and ZFP36L2 are RNA-binding proteins (RBPs) that interact with AU-rich elements in the 3' untranslated region of mRNA, which leads to mRNA degradation and translational repression. Here we show that mice that lacked ZFP36L1 and ZFP36L2 during thymopoiesis developed a T cell acute lymphoblastic leukemia (T-ALL) dependent on the oncogenic transcription factor Notch1. Before the onset of T-ALL, thymic development was perturbed, with accumulation of cells that had passed through the beta-selection checkpoint without first expressing the T cell antigen receptor beta-chain (TCRbeta). Notch1 expression was higher in untransformed thymocytes in the absence of ZFP36L1 and ZFP36L2. Both RBPs interacted with evolutionarily conserved AU-rich elements in the 3' untranslated region of Notch1 and suppressed its expression. Our data establish a role for ZFP36L1 and ZFP36L2 during thymocyte development and in the prevention of malignant transformation.
Resumo:
Down-regulation of the initial burst of viremia during primary human immunodeficiency virus (HIV) infection is thought to be mediated predominantly by HIV-specific CD8+ cytotoxic T lymphocytes (CTL). This response is associated with major perturbations in the T cell receptor (TCR) repertoire. To investigate the failure of the cellular immune response to adequately control viral spread and replication and to prevent establishment of HIV infection, changes in the TCR repertoire and in the distribution of virus-specific CTL between blood and lymph node were analyzed in three patients with primary infection. By the combined use of clonotype-specific polymerase chain reaction and analysis of the frequency of in vivo activated HIV-specific CTL, it was shown that HIV-specific CTL clones preferentially accumulated in blood as opposed to lymph node. Accumulation of HIV-specific CTL in blood occurred prior to effective down-regulation of virus replication in both blood and lymph node. These findings should provide new insights into how HIV, and possibly other viruses, elude the immune response of the host during primary infection.
Resumo:
The involvement of a variety of clonal selection processes during the development of T lymphocytes in the thymus has been well established. Less information, however, is available on how homeostatic mechanisms may regulate the generation and maturation of thymocytes. To investigate this question, mixed radiation bone marrow chimeras were established in which wild-type T cell precursors capable of full maturation were diluted with precursors deficient in maturation potential because of targeted mutations of the RAG1 or TCR-alpha genes. In chimeras in which the majority of thymocytes are blocked at the CD4- CD8- CD25+ stage (RAG1 deficient), and only a small proportion of T cell precursors are of wild-type origin, we observed no difference in the maturation of wild-type CD4- CD8- CD25+ cells to the CD4+ CD8+ stage as compared with control chimeras. Therefore, the number of cell divisions occurring during this transition is fixed and not subject to homeostatic regulation. In contrast, in mixed chimeras in which the majority of thymocytes are blocked at the CD4+ CD8+ stage (TCR-alpha deficient), an increased efficiency of development of wild-type mature CD8+ cells was observed. Surprisingly, the rate of generation of mature CD4+ thymocytes was not affected in these chimeras. Thus, the number of selectable CD8 lineage thymocytes apparently saturates the selection mechanism in normal mice while the development of CD4 lineage cells seems to be limited only by the expression of a suitable TCR. These data may open the way to the identification of homeostatic mechanisms regulating thymic output and CD4/CD8 lineage commitment, and the development of means to modulate it.
Resumo:
During their development, immature CD4+ CD8+ thymocytes become committed to either the CD4 or CD8 lineage. Subsequent complete maturation of CD4+ and CD8+ cells requires a molecular match of the expressed coreceptor and the MHC specificity of the TCR. The final size of the mature CD4+ and CD8+ thymic compartments is therefore determined by a combination of lineage commitment and TCR-mediated selection. In humans and mice, the relative size of CD4+ and CD8+ peripheral T cell compartments shows marked genetic variability. We show here that genetic variations in thymic lineage commitment, rather than TCR-mediated selection processes, are responsible for the distinct CD4/CD8 ratios observed in common inbred mouse strains. Genetic variations in the regulation of lineage commitment open new ways to analyze this process and to identify the molecules involved.
Resumo:
T cell activation by the specific Ag results in dramatic changes of the T cell phenotype that include a rapid and profound down-regulation and degradation of triggered TCRs. In this work, we investigated the fate of the TCR-associated ZAP-70 kinase in Ag-stimulated T cells. T cells stimulated by peptide-pulsed APCs undergo an Ag dose-dependent decrease of the total cellular content of ZAP-70, as detected by FACS analysis and confocal microscopy on fixed and permeabilized T cell-APC conjugates and by Western blot on total cell lysates. The time course of ZAP-70 consumption overlaps with that of zeta-chain degradation, indicating that ZAP-70 is degraded in parallel with TCR internalization and degradation. Pharmacological activation of protein kinase C (PKC) does not induce ZAP-70 degradation, which, on the contrary, requires activation of protein tyrosine kinases. Two lines of evidence indicate that the Ca2+-dependent cysteine protease calpain plays a major role in initiating ZAP-70 degradation: 1) treatment of T cells with cell-permeating inhibitors of calpain markedly reduces ZAP-70 degradation; 2) ZAP-70 is cleaved in vitro by calpain. Our results show that, in the course of T cell-APC cognate interaction, ZAP-70 is rapidly degraded via a calpain-dependent mechanism.
Resumo:
Superantigens (SAgs) are proteins of microbial origin that bind to major histocompatibility complex (MHC) class II molecules and stimulate T cells via interaction with the V beta domain of the T cell receptor (TCR). Mouse mammary tumor virus (MMTV) is a milk-transmitted type B retrovirus that encodes a SAg in its 3' long terminal repeat. Upon MMTV infection, B cells present SAg to the appropriate T cell subset, which leads to a strong "cognate" T-B interaction. This immune reaction results in preferential clonal expansion of infected B cells and differentiation of some of these cells into long-lived memory cells. In this way a stable MMTV infection is achieved that ultimately results in infection of the mammary gland and virus transmission via milk. Thus, in contrast to many microorganisms that attempt to evade the host immune system (reviewed in 1), MMTV depends upon a strong SAg-induced immune response for its survival. Because of their ability to stimulate very strong T cell responses in MHC-identical mice, minor lymphocyte stimulatory (Mls) antigens, discovered more than 20 years ago, are now known to be SAgs encoded by endogenous MMTV proviruses that have randomly integrated into germ cells. The aim of this review is to combine the extensive biology of Mls SAgs with our current understanding of the life cycle of MMTV.
Resumo:
T-cell receptor (TCR) engagement induces the maturation of thymocytes and the activation and proliferation of peripheral T cells through signaling pathways that target several transcription factors. The transcription factor nuclear factor-κB (NF-κB) has an essential role in the activation of mature T cells but the signaling pathway leading from TCR stimulation to NF-κB activation is not well defined. Carma1, Bcl10 and MALT1 are recently identified proteins that have an important and previously unexpected role in antigen receptor-induced NF-κB activation and the control of lymphocyte proliferation. We believe that the recent advances in this field could stimulate research for the development of new immunomodulatory drugs and could lead to a better understanding of the molecular mechanisms underlying the formation of lymphomas and potentially of other immune disorders.
Resumo:
The CD8 coreceptor plays a crucial role in both T cell development in the thymus and in the activation of mature T cells in response to Ag-specific stimulation. In this study we used soluble peptides-MHC class I (pMHC) multimeric complexes bearing mutations in the CD8 binding site that impair their binding to the MHC, together with altered peptide ligands, to assess the impact of CD8 on pMHC binding to the TCR. Our data support a model in which CD8 promotes the binding of TCR to pMHC. However, once the pMHC/TCR complex is formed, the TCR dominates the pMHC/TCR dissociation rates. As a consequence of these molecular interactions, under physiologic conditions CD8 plays a key role in complex formation, resulting in the enhancement of CD8 T cell functions whose specificity, however, is determined by the TCR.