795 resultados para Realism of theories
Resumo:
Recent investigations of various quantum-gravity theories have revealed a variety of possible mechanisms that lead to Lorentz violation. One of the more elegant of these mechanisms is known as Spontaneous Lorentz Symmetry Breaking (SLSB), where a vector or tensor field acquires a nonzero vacuum expectation value. As a consequence of this symmetry breaking, massless Nambu-Goldstone modes appear with properties similar to the photon in Electromagnetism. This thesis considers the most general class of vector field theories that exhibit spontaneous Lorentz violation-known as bumblebee models-and examines their candidacy as potential alternative explanations of E&M, offering the possibility that Einstein-Maxwell theory could emerge as a result of SLSB rather than of local U(1) gauge invariance. With this aim we employ Dirac's Hamiltonian Constraint Analysis procedure to examine the constraint structures and degrees of freedom inherent in three candidate bumblebee models, each with a different potential function, and compare these results to those of Electromagnetism. We find that none of these models share similar constraint structures to that of E&M, and that the number of degrees of freedom for each model exceeds that of Electromagnetism by at least two, pointing to the potential existence of massive modes or propagating ghost modes in the bumblebee theories.
Resumo:
Behavioral finance, or behavioral economics, consists of a theoretical field of research stating that consequent psychological and behavioral variables are involved in financial activities such as corporate finance and investment decisions (i.e. asset allocation, portfolio management and so on). This field has known an increasing interest from scholar and financial professionals since episodes of multiple speculative bubbles and financial crises. Indeed, practical incoherencies between economic events and traditional neoclassical financial theories had pushed more and more researchers to look for new and broader models and theories. The purpose of this work is to present the field of research, still ill-known by a vast majority. This work is thus a survey that introduces its origins and its main theories, while contrasting them with traditional finance theories still predominant nowadays. The main question guiding this work would be to see if this area of inquiry is able to provide better explanations for real life market phenomenon. For that purpose, the study will present some market anomalies unsolved by traditional theories, which have been recently addressed by behavioral finance researchers. In addition, it presents a practical application of portfolio management, comparing asset allocation under the traditional Markowitz’s approach to the Black-Litterman model, which incorporates some features of behavioral finance.
Resumo:
Using a synthesis of the functional integral and operator approaches we discuss the fermion-buson mapping and the role played by the Bose field algebra in the Hilbert space of two-dimensional gauge and anomalous gauge field theories with massive fermions. In QED, with quartic self-interaction among massive fermions, the use of an auxiliary vector field introduces a redundant Bose field algebra that should not be considered as an element of the intrinsic algebraic structure defining the model. In anomalous chiral QED, with massive fermions the effect of the chiral anomaly leads to the appearance in the mass operator of a spurious Bose field combination. This phase factor carries no fermion selection rule and the expected absence of Theta-vacuum in the anomalous model is displayed from the operator solution. Even in the anomalous model with massive Fermi fields, the introduction of the Wess-Zumino field replicates the theory, changing neither its algebraic content nor its physical content. (C) 2002 Elsevier B.V. (USA).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The classical and quantum algebras of a class of conformal NA-Toda models are studied. It is shown that the SL(2,R)(q) Poisson brackets algebra generated by certain chiral and antichiral charges of the nonlocal currents and the global U(1) charge appears as an algebra of the symmetries of these models. (C) 1998 Elsevier B.V. B.V. All rights reserved.
Resumo:
Using the functional integral formalism for the statistical generating functional in the statistical (finite temperature) quantum field theory, we prove the equivalence of many-photon Greens functions in the Duffin-Kennner-Petiau and Klein-Gordon-Fock statistical quantum field theories. As an illustration, we calculate the one-loop polarization operators in both theories and demonstrate their coincidence.
Resumo:
We investigate a class of conformal nonabelian-Toda models representing noncompact SL(2, R)/U(1) parafermions (PF) interacting with specific abelian Toda theories and having a global U(1) symmetry. A systematic derivation of the conserved currents, their algebras, and the exact solution of these models are presented. An important property of this class of models is the affine SL(2, R)(q) algebra spanned by charges of the chiral and antichiral nonlocal currents and the U(1) charge. The classical (Poisson brackets) algebras of symmetries VG(n), of these models appear to be of mixed PF-WG(n) type. They contain together with the local quadratic terms specific for the W-n-algebras the nonlocal terms similar to the ones of the classical PF-algebra. The renormalization of the spins of the nonlocal currents is the main new feature of the quantum VA(n)-algebras. The quantum VA(2)-algebra and its degenerate representations are studied in detail. (C) 1999 Academic Press.
Resumo:
Using the Langevin approach for stochastic processes, we study the renormalizability of the massive Thirring model. At finite fictitious time, we prove the absence of induced quadrilinear counterterms by verifying the cancellation of the divergencies of graphs with four external lines. This implies that the vanishing of the renormalization group beta function already occurs at finite times.
Resumo:
We prove the equivalence of many-gluon Green's functions in the Duffin-Kemmer-Petieu and Klein-Gordon-Fock statistical quantum field theories. The proof is based on the functional integral formulation for the statistical generating functional in a finite-temperature quantum field theory. As an illustration, we calculate one-loop polarization operators in both theories and show that their expressions indeed coincide.
Resumo:
In this work the independent particle model formulation is studied as a mean-field approximation of gauge theories using the path integral approach in the framework of quantum electrodynamics in 1 + 1 dimensions. It is shown how a mean-field approximation scheme can be applied to fit an effective potential to an independent particle model, building a straightforward relation between the model and the associated gauge field theory. An example is made considering the problem of massive Dirac fermions on a line, the so called massive Schwinger model. An interesting result is found, indicating a behaviour of screening of the charges in the relativistic limit of strong coupling. A forthcoming application of the method developed to confining potentials in independent quark models for QCD is in view and is briefly discussed.
Resumo:
Fluoroindate glasses of the following compositions: (40-x)InF3-20ZnF(2)-16BaF(2)-20SrF(2)-2GdF(3)-2NaF-xTmF(3) with x = 1,3 mol% were prepared in a dry box under an argon atmosphere. The absorption spectra at room temperature in the spectral range 350-2200 nm were obtained. The spectra obtained for each sample had similar absorption and only the amplitude of the different bands changed as the concentration of Tm3+. The experimental oscillator strengths were determined from the areas under the absorption bands. Using the standard and modified Judd-Ofelt theory, intensity parameters Ohm(lambda) (lambda = 2,4,6) and (lambda = 2,3,4,5,6), respectively for f-f transitions of Tm3+ ions as well as transition probabilities, branching ratios and radiative lifetimes for each band were determined. The results are compared with those of other glasses described in the literature. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
It is shown that the action functional S[g, phi] = integral d4 x square-root -g[R/k(1 + klambdaphi2) + partial derivative(mu)phi partial derivative(mu)phi] describes, in general, one and the same classical theory whatever may be the value of the coupling constant lambda.
Resumo:
A systematic construction of super W algebras in terms of the WZNW model based on a super Lie algebra is presented. These are shown to be the symmetry structure of the super Toda models, which can be obtained from the WZNW theory by Hamiltonian reduction. A classification, according to the conformal spin defined by an improved energy momentum tensor, is discussed in general terms for all super Lie algebras whose simple roots are fermionic. A detailed discussion employing the Dirac bracket structure and an explicit construction of W algebras for the cases of OSP(1, 2), OSP(2, 2), OSP(3, 2) and D(2, 1\ alpha) are given. The N = 1 and N = 2 superconformal algebras are discussed in the pertinent cases.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)