905 resultados para Radioisotopes in animal culture.
Resumo:
Agricultural workers especially poultry farmers, are at increased risk of occupational respiratory diseases. In poultry production besides fungi microbial volatile organic compounds (MVOCs) are also present due to compounds released during fungal metabolism. Dust is also one of the risk factors present in animal housing and is comprised by poultry residues, fungi and feathers. A study was developed aiming to assess occupational exposure to fungi, MVOCs and dust in seven poultry units located in Portugal.
Resumo:
Certain environmental conditions in animal and plant production have been associated with increased frequency in respiratory illnesses, including asthma, chronic bronchitis, and hypersensitivity pneumonitis, in farmers occupationally exposed in swine production. The aim of this study was to characterize particulate matter (PM) contamination in seven Portuguese swine farms and determine the existence of clinical symptoms associated with asthma and other allergy diseases, utilizing the European Community Respiratory Health Survey questionnaire. Environmental assessments were performed with portable direct-reading equipment, and PM contamination including five different sizes (PM0.5, PM1.0, PM2.5, PM5.0, PM10) was determined. The distribution of particle size showed the same trend in all swine farms, with high concentrations of particles with PM5 and PM10. Results from the questionnaire indicated a trend such that subjects with diagnosis of asthma were exposed to higher concentrations of PM with larger size (PM2.5, PM5, and PM10) while subjects with sneezing, runny nose, or stuffy nose without a cold or flu were exposed to higher concentrations of PM with smaller size (PM0.5 and PM1). Data indicate that inhalation of PM in swine farm workers is associated with increased frequency of respiratory illnesses.
Resumo:
The initial goal of this work was the development of a supported liquid membrane (SLM) bioreactor for the remediation of vaccine production effluents contaminated with a highly toxic organomercurial – thiomersal. Therefore, two main aspects were focused on: 1) the development of a stable supported liquid membrane – using room temperature ionic liquids (RTILs) – for the selective transport of thiomersal from the wastewater to a biological compartment, 2) study of the biodegradation kinetics of thiomersal to metallic mercury by a Pseudomonas putida strain. The first part of the work focused on the evaluation of the physicochemical properties of ionic liquids and on the SLMs’ operational stability. The results obtained showed that, although it is possible to obtain a SLM with a high stability, water possesses nonnegligible solubility in the RTILs studied. The formation of water clusters inside the hydrophobic ionic liquid was identified and found to regulate the transport of water and small ions. In practical terms, this meant that, although it was possible to transport thiomersal from the vaccine effluent to the biological compartment, complete isolation of the microbial culture could not be guaranteed and the membrane might ultimately be permeable to other species present in the aqueous vaccine wastewater. It was therefore decided not to operate the initially targeted integrated system but, instead, the biological system by itself. Additionally, attention was given to the development of a thorough understanding of the transport mechanisms involved in the solubilisation and transport of water through supported liquid membranes with RTILs as well as to the evaluation of the effect of water uptake by the SLM in the transport mechanisms of water-soluble solutes and its effect on SLM performance. The results obtained highlighted the determinant role played by water – solubilised inside the ionic liquids – on the transport mechanism. It became clear that the transport mechanism of water and water-soluble solutes through SLMs with [CnMIM][PF6] RTILs was regulated by the dynamics of water clusters inside the RTIL, rather than by molecular diffusion through the bulk of the ionic liquid. Although the stability tests vi performed showed that there were no significant losses of organic phase from the membrane pores, the formation of water clusters inside the ionic liquid, which constitute new, non-selective environments for solute transport, leads to a clear deterioration of SLM performance and selectivity. Nevertheless, electrical impedance spectroscopy characterisation of the SLMs showed that the formation of water clusters did not seem to have a detrimental effect on the SLMs’ electrical characteristics and highlighted the potential of using this type of membranes in electrochemical applications with low resistance requirements. The second part of the work studied the kinetics of thiomersal degradation by a pure culture of P. putida spi3 strain, in batch culture and using a synthe tic wastewater. A continuous ly stirred tank reactor fed with the synthetic wastewater was also operated and the bioreactor’s performance and robustness, when exposed to thiomersal shock loads, were evaluated. Finally, a bioreactor for the biological treatment of a real va ccine production effluent was set up and operated at different dilution rates. Thus it was possible to treat a real thiomersal-contaminated effluent, lowering the outlet mercury concentration to values below the European limit for mercury effluent discharges.
Resumo:
Human term placental villi cultured ''in vitro" were maintained with bloodstream forms of Trypanosoma cruzi during various periods of time. Two different concentrations of the parasite were employed. Controls contained no T. cruzi. The alkaline phosphatase activity was determined in placental villi by electron microscopy and its specific activity in the culture medium by biochemical methods. Results showed that the hemoflagellate produces a significant decrease in enzyme activity as shown by both ultracytochemical and specific activity studies and this activity was lower in cultures with high doses of parasites. The above results indicate that the reduction in enzyme activity coincides with the time of penetration and proliferation of T. cruzi in mammalian cells. These changes may represent an interaction between human trophoblast and T. cruzi.
Resumo:
The isoenzyme profiles (IP) of 33 strains of Entamoeba histolytica isolated from patients and carriers of two regions in Brazil (Amazonia and Southeast) were determined. The enzymes phosphoglucomutase, glucose-phosphate isomerase, hexokinase and malic enzyme were considered. IP of the strains was correlated with culture conditions, time of maintenance in laboratory and clinical history of patients. The strains were maintained under polyxenic, monoxenic and axenic culture conditions: 27 polyxenic, 1 polyxenic and monoxenic, 1 polyxenic, monoxenic and axenic and 4 axenic only. The patients were symptomatic and asymptomatic. The symptomatic patients presented either non dysenteric (NDC) or dysenteric colitis (DC), associated or not with hepatic abscess (HA). One patient presented anal amoeboma (AM). The analysis of IP for isolates maintained in polyxenic culture showed non pathogenic IP (I) for strains from carriers and patients with NDC, while the strains isolated from patients presenting DC, HA and AM resulted in isolates II or XIX pathogenic IP. This parameter was not able to differentiate strains from carriers from symptomatic patients when these strains were found in axenic or monoxenic culture. All these strains displayed pathogenic IP (II), demonstrating the inability of this parameter to classifying for virulence since it showed identical IP for strains isolated from carriers or symptomatic patients.
Resumo:
Observation of Schistosoma mansoni oviposition during in vitro culture of adult worms for a maximum period of 10 days showed three well distinct phases in the kinetics of oviposition: an initial phase with low egg production, a period of maximum oviposition and finally a progressive reduction in the number of eggs during the late phases of culture. The kinetics of oviposition and the number of eggs laid by the parasites are influenced by the number of worm pairs per amount of RPMI 1640 medium, time of parasite development in the vertebrate host and type of serum utilized in the culture medium.
Resumo:
Dissertation presented to obtain the Ph.D degree in Ciências da Engenharia e Tecnologia, especialidade Biotecnologia
Resumo:
Group B Streptococcus is the most common pathogen found in neonatal sepsis in North America. OBJECTIVES: We describe 15 cases of neonatal infections by Group B Streptococcus (Streptococcus agalactiae) at a Neonatal Intensive Care Unit of a public and teaching hospital. METHODS: We conducted a study at Hospital de Clínicas de Porto Alegre, from January 1st, 1996 to June 30, 1999. Diagnosis of neonatal infection was established according to the findings of Group B Streptococcus in blood culture associated with alterations resembling sepsis on the basis of clinical picture and laboratory findings. RESULTS: Fifteen cases of neonatal infections by Group B Streptococcus were detected. Eleven cases consisted of early-onset sepsis, 2 cases of occult bacteremia and 2 cases of late-onset sepsis. Eight cases had septic shock (53%), 8 cases had pneumonia (53%), and 4 cases had meningitis (27%). Fourteen cases were diagnosed from a positive blood culture, and 1 case from evidence of these bacteria in pulmonary anatomopathological examination. Thirteen cases (87%) were diagnosed before 72 hours of life. We had 3 deaths (20%), and 3 cases of meningitis developing neurological deficits. CONCLUSIONS: Streptococcus Group B is one of the most important pathogens in the etiology of early-onset neonatal sepsis at our hospital, with high mortality and morbidity. However, we do not know the incidence of GBS neonatal infections at other hospitals. More data are needed to establish a basis for trials of different strategies to reduce these infections.
Resumo:
Animal and human rabies samples isolated between 1989 and 2000 were typified by means of a monoclonal antibody panel against the viral nucleoprotein. The panel had been previously established to study the molecular epidemiology of rabies virus in the Americas. Samples were isolated in the Diagnostic Laboratory of the Pasteur Institute and in other rabies diagnostic centers in Brazil. In addition to the fixed virus samples CVS-31/96-IP, preserved in mouse brain, and PV-BHK/97, preserved in cell culture, a total of 330 rabies virus samples were isolated from dogs, cats, cattle, horses, bats, sheep, goat, swine, foxes, marmosets, coati and humans. Six antigenic variants that were compatible with the pre-established monoclonal antibodies panel were defined: numbers 2 (dog), 3 (Desmodus rotundus), 4 (Tadarida brasiliensis), 5 (vampire bat from Venezuela), 6 (Lasiurus cinereus) and Lab (reacted to all used antibodies). Six unknown profiles, not compatible with the panel, were also found. Samples isolated from insectivore bats showed the greatest variability and the most commonly isolated variant was variant-3 (Desmodus rotundus). These findings may be related to the existence of multiple independent transmission cycles, involving different bat species.
Resumo:
Candida dubliniensis is a new, recently described species of yeast. This emerging oral pathogen shares many phenotypic and biochemical characteristics with C. albicans, making it hard to differentiate between them, although they are genotypically distinct. In this study, PCR (Polymerase Chain Reaction) was used to investigate the presence of C. dubliniensis in samples in a culture collection, which had been isolated from HIV-positive and HIV-negative patients with oral erythematous candidiasis. From a total of 37 samples previously identified as C. albicans by the classical method, two samples of C. dubliniensis (5.4%) were found through the use of PCR. This study underscores the presence of C. dubliniensis, whose geographical and epidemiological distribution should be more fully investigated.
Resumo:
In regions with high prevalence, Blastocystis hominis is frequently found in association with Entamoeba histolytica/E. dispar in xenic cultures. Its exacerbated growth is often superimposed on the growth of amebas, thus impeding the continuation of the amebas in the culture, within a few generations. The present study reports on the excellent efficacy (100%) of the antifungal agent miconazole in eliminating B. hominis from cultures of E. histolytica/E. dispar, thereby maintaining the integrity of the trophozoites of the amebas. Nystatin presented low efficacy (33.3%).
Resumo:
Human Bartonellosis has an acute phase characterized by fever and hemolytic anemia, and a chronic phase with bacillary angiomatosis-like lesions. This cross-sectional pilot study evaluated the immunology patterns using pre- and post-treatment samples in patients with Human Bartonellosis. Patients between five and 60 years of age, from endemic areas in Peru, in the acute or chronic phases were included. In patients in the acute phase of Bartonellosis a state of immune peripheral tolerance should be established for persistence of the infection. Our findings were that elevation of the anti-inflammatory cytokine IL-10 and numeric abnormalities of CD4+ and CD8+ T-Lymphocyte counts correlated significantly with an unfavorable immune state. During the chronic phase, the elevated levels of IFN-γ and IL-4 observed in our series correlated with previous findings of endothelial invasion of B. henselae in animal models.
Resumo:
Trichosporon spp. are yeasts capable of causing invasive disease, which mainly affect immunocompromised patients. A clinical strain of T. asahii was isolated from the blood cultures of patients admitted to the General Hospital of Fortaleza. Susceptibility tests were conducted by disk diffusion and broth microdilution. The isolated strain of T. asahii was resistant to fluconazole. The patient used amphotericin B and caspofungin in order to facilitate the microbiological cure. It was the first isolation and identification of T. asahii in blood culture in Ceará, Brazil.
Resumo:
We analyzed the sandflies around houses and domestic animal shelters located in residences close to forests in localities on the banks of the Araguari River, Uberlândia, MG, from February 2003 to November 2004. The phlebotomines were captured in the peridomiciliary area, where Shannon traps were utilized in the peridomicile and CDC traps in animal shelters. 2,783 specimens of sandflies were captured, 2,140 females (76.9%) and 643 males (23.1%), distributed between 17 species. The most abundant species was Nyssomyia neivai (88.1%), followed by Nyssomyia whitmani (3.1%). The presence of Lutzomyia longipalpis was also confirmed, it is the main vector of Leishmania (L.) infantum chagasi which causes visceral leishmaniasis. The presence of species involved in the transmission of leishmaniases in the municipality of Uberlândia is cause for concern. The presence of L. longipalpis indicates that its urbanization may not have been aleatory and instead occurred through the destruction of wild ecotopes. More studies of their occupation in anthropic environments need to be made.
Resumo:
SUMMARYThis study evaluated the applicability of kDNA-PCR as a prospective routine diagnosis method for American tegumentary leishmaniasis (ATL) in patients from the Instituto de Infectologia Emílio Ribas (IIER), a reference center for infectious diseases in São Paulo - SP, Brazil. The kDNA-PCR method detected Leishmania DNA in 87.5% (112/128) of the clinically suspected ATL patients, while the traditional methods demonstrated the following percentages of positivity: 62.8% (49/78) for the Montenegro skin test, 61.8% (47/76) for direct investigation, and 19.3% (22/114) for in vitro culture. The molecular method was able to confirm the disease in samples considered negative or inconclusive by traditional laboratory methods, contributing to the final clinical diagnosis and therapy of ATL in this hospital. Thus, we strongly recommend the inclusion of kDNA-PCR amplification as an alternative diagnostic method for ATL, suggesting a new algorithm routine to be followed to help the diagnosis and treatment of ATL in IIER.