869 resultados para REMOTE DISCHARGE
Resumo:
The formation of electric potential over lunar magnetized regions is essential for understanding fundamental lunar science, for understanding the lunar environment, and for planning human exploration on the Moon. A large positive electric potential was predicted and detected from single point measurements. Here, we demonstrate a remote imaging technique of electric potential mapping at the lunar surface, making use of a new concept involving hydrogen neutral atoms derived from solar wind. We apply the technique to a lunar magnetized region using an existing dataset of the neutral atom energy spectrometer SARA/CENA on Chandrayaan-1. Electrostatic potential larger than +135 V inside the Gerasimovic anomaly is confirmed. This structure is found spreading all over the magnetized region. The widely spread electric potential can influence the local plasma and dust environment near the magnetic anomaly.
Resumo:
Utilizing advanced information technology, Intensive Care Unit (ICU) remote monitoring allows highly trained specialists to oversee a large number of patients at multiple sites on a continuous basis. In the current research, we conducted a time-motion study of registered nurses’ work in an ICU remote monitoring facility. Data were collected on seven nurses through 40 hours of observation. The results showed that nurses’ essential tasks were centered on three themes: monitoring patients, maintaining patients’ health records, and managing technology use. In monitoring patients, nurses spent 52% of the time assimilating information embedded in a clinical information system and 15% on monitoring live vitals. System-generated alerts frequently interrupted nurses in their task performance and redirected them to manage suddenly appearing events. These findings provide insight into nurses’ workflow in a new, technology-driven critical care setting and have important implications for system design, work engineering, and personnel selection and training.
Resumo:
The RPC developed a new phantom to ensure comparable and consistent radiation administration in spinal radiosurgery clinical trials. This study assessed the phantom’s dosimetric and anatomic utility. The ‘spine phantom’ is a water filled thorax with anatomy encountered in spinal radiosurgery: target volume, vertebral column, spinal canal, esophagus, heart, and lungs. The dose to the target volume was measured with axial and sagittal planes of radiochromic film and thermoluminescent dosimeters (TLD). The dose distributions were measured with the radiochromic film calibrated to the absolute dose measured by the TLD. Four irradiations were administered: a four angle box plan, a seven angle conformal plan, a seven angle IMRT plan, and a nine angle IMRT plan (denoted as IMRT plan #1 and plan #2, respectively). In each plan, at least 95% of the defined tumor volume received 8 Gy. For each irradiation the planned and administered dose distributions were registered via pinpricks, and compared using point dose measurements, dose profiles, isodose distributions, and gamma analyses. Based on previous experience at the RPC, a gamma analysis was considering passing if greater than 95% of pixels passed the criteria of 5% dose difference and 3 mm distance-to-agreement. Each irradiation showed acceptable agreement in the qualitative assessments and exceeded the 95% passing rate at the 5% / 3 mm criteria, except IMRT plan #1, which was determined to have been poorly localized during treatment administration. The measured and planned dose distributions demonstrated acceptable agreement at the 5% / 3 mm criteria, and the spine phantom was determined to be a useful tool for the remote assessment of an institution’s treatment planning and dose delivery regimen.
Resumo:
Acute central nervous system (CNS) injuries such as spinal cord injury, traumatic brain injury, autoimmune encephalomyelitis, and ischemic stroke are associated with significant morbidity, mortality, and health care costs worldwide. Preliminary research has shown potential neuroprotection associated with adult tissue derived stem/progenitor cell based therapies. While initial research indicated that engraftment and transdifferentiation into neural cells could explain the observed benefit, the exact mechanism remains controversial. A second hypothesis details localized stem/progenitor cell engraftment with alteration of the loco-regional milieu; however, the limited rate of cell engraftment makes this theory less likely. There is a growing amount of preclinical data supporting the idea that, after intravenous injection, stem/progenitor cells interact with immunologic cells located in organ systems distant to the CNS, thereby altering the systemic immunologic/inflammatory response. Such distant cell "bioreactors" could modulate the observed post-injury pro-inflammatory environment and lead to neuroprotection. In this review, we discuss the current literature detailing the above mechanisms of action for adult stem/progenitor cell based therapies in the CNS.
Resumo:
The reliability of millimeter and sub-millimeter wave radiometer measurements is dependent on the accuracy of the loads they employ as calibration targets. In the recent past on-board calibration loads have been developed for a variety of satellite remote sensing instruments. Unfortunately some of these have suffered from calibration inaccuracies which had poor thermal performance of the calibration target as the root cause. Stringent performance parameters of the calibration target such as low reflectivity, high temperature uniformity, low mass and low power consumption combined with low volumetric requirements remain a challenge for the space instrument developer. In this paper we present a novel multi-layer absorber concept for a calibration load which offers an excellent compromise between very good radiometric performance and temperature uniformity and the mass and volumetric constraints required by space-borne calibration targets.
Resumo:
BACKGROUND: There are differences in the literature regarding outcomes of premature small-for-gestational-age (SGA) and appropriate-for gestational-age (AGA) infants, possibly due to failure to take into account gestational age at birth. OBJECTIVE: To compare mortality and respiratory morbidity of SGA and AGA premature newborn infants. DESIGN/METHODS: A retrospective study was done of the 2,487 infants born without congenital anomalies at RESULTS: Controlling for GA, premature SGA infants were at a higher risk for mortality (Odds ratio 3.1, P = 0.001) and at lower risk of respiratory distress syndrome (OR = 0.71, p = 0.02) than AGA infants. However multivariate logistic regression modeling found that the odds of having respiratory distress syndrome (RDS) varied between SGA and AGA infants by GA. There was no change in RDS risk in SGA infants at GA 32 wk (OR = 0.41, 95% CI 0.27 - 0.63; p < 0.01). After controlling for GA, SGA infants were observed to be at a significantly higher risk for developing chronic lung disease as compared to AGA infants (OR = 2.2, 95% CI = 1.2 - 3.9, P = 0.01). There was no significant difference between SGA and AGA infants in total days on ventilator. Among infants who survived, mean length of hospital stay was significantly higher in SGA infants born between 26-36 wks GA than AGA infants. CONCLUSIONS: Premature SGA infants have significantly higher mortality, significantly higher risk of developing chronic lung disease and longer hospital stay as compared to premature AGA infants. Even the reduced risk of RDS in infants born at >/=32 wk GA, (conferred possibly by intra-uterine stress leading to accelerated lung maturation) appears to be of transient effect and is counterbalanced by adverse effects of poor intrauterine growth on long term pulmonary outcomes such as chronic lung disease.
Resumo:
REASONS FOR PERFORMING STUDY In clinical practice, veterinarians often depend on owner-reported signs to assess the clinical course of horses with recurrent airway obstruction (RAO). OBJECTIVES To test whether owner-reported information on frequency of coughing and observation of nasal discharge are associated with clinical, cytological and bronchoprovocation findings in RAO-affected horses in nonstandardised field conditions. STUDY DESIGN Cross-sectional study comparing healthy and RAO-affected horses. METHODS Twenty-eight healthy and 34 RAO-affected Swiss Warmblood horses were grouped according to owner-reported 'coughing frequency' and 'nasal discharge'. Differences between these groups were examined using clinical examination, blood gas analyses, endoscopic mucus scores, cytology of tracheobronchial secretion and bronchoalveolar lavage fluid, and airway hyperresponsiveness determined by plethysmography with histamine bronchoprovocation. RESULTS Frequently coughing horses differed most markedly from healthy control animals. Histamine bronchoprovocation-derived parameters were significantly different between the healthy control group and all RAO groups. Mucus grades and tracheobronchial secretion and bronchoalveolar lavage fluid neutrophil percentages had particularly high variability, with overlap of findings between groups. Owner satisfaction with the clinical status of the horse was high, even in severely affected horses. CONCLUSIONS Owner-reported coughing and nasal discharge are associated with specific clinical and diagnostic findings in RAO-affected horses in field settings. While airway hyperresponsiveness differentiates best between healthy horses and asymptomatic RAO-affected horses, the absence of coughing and nasal discharge does not rule out significant neutrophilic airway inflammation. Owner satisfaction with the clinical status of the horse was uninformative.
Resumo:
BACKGROUND It is often assumed that horses with mild respiratory clinical signs, such as mucous nasal discharge and occasional coughing, have an increased risk of developing recurrent airway obstruction (RAO). HYPOTHESIS Compared to horses without any clinical signs of respiratory disease, those with occasional coughing, mucous nasal discharge, or both have an increased risk of developing signs of RAO (frequent coughing, increased breathing effort, exercise intolerance, or a combination of these) as characterized by the Horse Owner Assessed Respiratory Signs Index (HOARSI 1-4). ANIMALS Two half-sibling families descending from 2 RAO-affected stallions (n = 65 and n = 47) and an independent replication population of unrelated horses (n = 88). METHODS In a retrospective cohort study, standardized information on occurrence and frequency of coughing, mucous nasal discharge, poor performance, and abnormal breathing effort-and these factors combined in the HOARSI-as well as management factors were collected at intervals of 1.3-5 years. RESULTS Compared to horses without clinical signs of respiratory disease (half-siblings 7%; unrelated horses 3%), those with mild respiratory signs developed clinical signs of RAO more frequently: half-siblings with mucous nasal discharge 35% (P < .001, OR: 7.0, sensitivity: 62%, specificity: 81%), with mucous nasal discharge and occasional coughing 43% (P < .001, OR: 9.9, sensitivity: 55%, specificity: 89%); unrelated horses with occasional coughing: 25% (P = .006, OR = 9.7, sensitivity: 75%, specificity: 76%). CONCLUSIONS AND CLINICAL IMPORTANCE Occasional coughing and mucous nasal discharge might represent an increased risk of developing RAO.
Resumo:
BACKGROUND Cold atmospheric plasma (CAP, i.e. ionized air) is an innovating promising tool in reducing bacteria. OBJECTIVE We conducted the first clinical trial with the novel PlasmaDerm(®) VU-2010 device to assess safety and, as secondary endpoints, efficacy and applicability of 45 s/cm(2) cold atmospheric plasma as add-on therapy against chronic venous leg ulcers. METHODS From April 2011 to April 2012, 14 patients were randomized to receive standardized modern wound care (n = 7) or plasma in addition to standard care (n = 7) 3× per week for 8 weeks. The ulcer size was determined weekly (Visitrak(®) , photodocumentation). Bacterial load (bacterial swabs, contact agar plates) and pain during and between treatments (visual analogue scales) were assessed. Patients and doctors rated the applicability of plasma (questionnaires). RESULTS The plasma treatment was safe with 2 SAEs and 77 AEs approximately equally distributed among both groups (P = 0.77 and P = 1.0, Fisher's exact test). Two AEs probably related to plasma. Plasma treatment resulted in a significant reduction in lesional bacterial load (P = 0.04, Wilcoxon signed-rank test). A more than 50% ulcer size reduction was noted in 5/7 and 4/7 patients in the standard and plasma groups, respectively, and a greater size reduction occurred in the plasma group (plasma -5.3 cm(2) , standard: -3.4 cm(2) ) (non-significant, P = 0.42, log-rank test). The only ulcer that closed after 7 weeks received plasma. Patients in the plasma group quoted less pain compared to the control group. The plasma applicability was not rated inferior to standard wound care (P = 0.94, Wilcoxon-Mann-Whitney test). Physicians would recommend (P = 0.06, Wilcoxon-Mann-Whitney test) or repeat (P = 0.08, Wilcoxon-Mann-Whitney test) plasma treatment by trend. CONCLUSION Cold atmospheric plasma displays favourable antibacterial effects. We demonstrated that plasma treatment with the PlasmaDerm(®) VU-2010 device is safe and effective in patients with chronic venous leg ulcers. Thus, larger controlled trials and the development of devices with larger application surfaces are warranted.
Resumo:
The crystal structure of the resting state of cytochrome P450cam (CYP101), a heme thiolate protein, shows a cluster of six water molecules in the substrate binding pocket, one of which is coordinating to iron(III) as sixth ligand. The resting state is low-spin and changes to high-spin when substrate camphor binds and H2O is removed. In contrast to the protein, previously synthesised enzyme models such as H2O[BOND]FeIII(porph)(ArS−) were shown to be purely high-spin. Iron(S−)porphyrins with different distal sites mimicking proposed remote effects have been prepared and studied by cw-EPR. The results indicate that the low-spin of the resting state of P450cam is due to the fact that the water molecule coordinating to iron has an OH−-like character because of hydrogen bonding and polarisation of the water cluster, respectively.
Resumo:
Radiogenic He is produced by the decay of uranium and thorium in the Earth’s mantle and crust. From here, it is degassed to the atmosphere and eventually escapes to space. Assuming that all of the 4He produced is degassed, about 70% of the total He degassed from Earth comes from the continental crust. However, the outgoing flux of crustal He has not been directly measured at the Earth’s surface and the migration pathways are poorly understood. Here we present measurements of helium isotopes and the long-lived cosmogenic radio-isotope Kr in the deep, continental-scale Guarani aquifer in Brazil and show that crustal He reaches the atmosphere primarily by the surficial discharge of deep groundwater. We estimate that He in Guarani groundwater discharge accounts for about 20% of the assumed global flux from continental crust, and that other large aquifers may account for about 33%. Old groundwater ages suggest that He in the Guarani aquifer accumulates over half- to one-millionyear timescales. We conclude that He degassing from the continents is regulated by groundwater discharge, rather than episodic tectonic events, and suggest that the assumed steady state between crustal production and degassing of He, and its resulting atmospheric residence time, should be re-examined.