1000 resultados para RECEPTOR MAS
Resumo:
Objective: To quantitatively measure VIP levels and to qualitatively study the distribution of VIP fibres and demonstrate the presence of the VPAC1 receptor in human dental pulp from carious and non-carious adult human teeth. Design: Dental pulp samples were collected from non-carious, moderately carious and grossly carious adult human teeth. VIP levels were determined using radioimmunoassay. The distribution of VIP fibres was studied using immunohistochemistry. The VPAC1 receptor protein expression was determined by Western blotting. Results: VIP levels were found to be significantly elevated in the dental pulp of moderately carious compared with non-carious (p = 0.0032) or grossly carious teeth (p = 0.0029). The distribution of VIP fibres was similar in non-carious and carious teeth, except that nerve bundles appeared thicker in the pulp samples from carious compared with non-carious teeth. Western blotting indicated that the VPAC1 receptor proteins were detected in similar levels in pooled dental pulp samples from both carious and non-carious teeth. Conclusion: It is concluded that quantitative changes in the levels of VIP in human dental pulp during the caries process and the expression of VPAC1 receptor proteins in membrane extracts from carious and non-carious teeth suggests a role for VIP in modulating pulpal health and disease. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
Latent inhibition (LI) is a behavioural paradigm in which repeated exposure to a stimulus without consequence inhibits the formation of any new associations with that stimulus. To the extent that LI reflects a process of learning to ignore irrelevant stimuli, disrupted LI has been suggested as an animal model for the attentional deficits observed in schizophrenia. The antipsychotic potential of cholecystokinin (CCK) stems from its colocalization with dopamine (DA) in the mesolimbic pathway, where it demonstrates both excitatory and inhibitory effects on dopaminergic activity. This may be explained by mediation through different receptor subtypes. A variety of hypotheses has emerged regarding the potential clinical application of subtype-selective CCK-based drugs. The present experiments examined the effects on LI of two selective CCKA ligands: PD-140,548 (a CCKA antagonist, Experiment 1: 0.001, 0.01, and 0.1 mg/kg) and A-71623 (a CCKA agonist, Experiment 2: 0.02, 0.05, and 0.1 mg/kg). In both experiments, the effects of haloperidol (0.1 mg/kg) were also investigated. Animals receiving 0.1 mg/kg of haloperidol or 0.001 or 0.1 mg/kg (but not 0.01 mg/kg) of PD-140,548 treated the preexposed stimulus as irrelevant after a low number of preexposures. In contrast, no facilitatory effect on LI was detectable at any of the A-71623 doses. The finding that A-71623 failed to enhance LI indicates that it is unlikely that this compound would have any antipsychotic effect within the clinical setting. Considering the facilitatory effect exerted by PD-140,548 on LI, it is probable that the inhibition of CCK activity might prove a more promising strategy for the pharmacological treatment of schizophrenia.
Resumo:
Epidemiological studies have identified psychological stress as a significant risk factor in breast cancer. The stress response is regulated by the HPA axis in the brain and is mediated by glucocorticoid receptor (GR) signalling. It has been found that early life events can affect epigenetic programming of GR, and methylation of the GR promoter has been reported in colorectal tumourigenesis. Decreased GR expression has also been observed in breast cancer. In addition, it has been previously demonstrated that unliganded GR can serve as a direct activator of the BRCA1 promoter in mammary epithelial cells. We propose a model whereby methylation of the GR promoter in the breast significantly lowers GR expression, resulting in insufficient BRCA1 promoter activation and an increased risk of developing cancer. Antibody-based methylated DNA enrichment was followed by qPCR analysis (MeDIP-qPCR) in a novel assay developed to detect locus-specific methylation levels. It was found that 13% of primary breast tumours were hypermethylated at the GR proximal promoter whereas no methylation was detected in normal tissue. RT-PCR and 5’ RACE analysis identified exon 1B as the predominant alternative first exon in the breast. Tumours methylated near exon 1B had decreased GR expression compared to unmethylated samples, suggesting that this region is important for transcriptional regulation of GR. It was also determined that GR and BRCA1 expression was decreased in breast tumour compared to normal tissue. Furthermore, the relative expression of GR and BRCA1 measured by qRT-PCR was correlated in normal tissue but this association was not found in tumour tissue. From this, it appears that lower GR levels with associated decreased BRCA1 expression in tissues may be a predisposing factor for breast cancer. Based on these results we propose a role for GR as a potential tumour suppressor gene in the breast due to its association with BRCA1, also a tumour suppressor gene, as well as its consistently decreased expression in breast tumours and methylation of its proximal promoter in a subset of cancer patients.
Resumo:
We have determined the methylation status of the CpG island of the oestrogen receptor gene in seven human ovarian cell lines. Cell lines expressing oestrogen receptor showed no evidence of hypermethylation. In three of four cell lines that produced no detectable oestrogen receptor protein, hypermethylation was observed at the NotI site of the CpG island. These results indicate that aberrant hypermethylation may be responsible for a significant proportion of epithelial ovarian tumours in which oestrogen receptor expression is lost.
Resumo:
Interaction of vascular cells with the laminin component of basement membranes is important for normal cell function. Likewise, abnormal interactions may have a critical role in vascular pathology. It has been previously demonstrated that the 67 kDa laminin receptor (67LR) is expressed at high levels during proliferative retinopathy in a mouse model and in the current study we have examined 67LR in the neonatal mouse to determine if this receptor plays a role in aspects of developmental angiogenesis in the developing murine retina. Groups of C57/BL6 mice were killed at postnatal day P1, P3, P5, P7, P9 and P11 to assess the retinal vasculature. A number of mice were perfused with FITC-dextran and the eyes removed, fixed in 4% paraformaldehyde (PFA) and flat-mounted for confocal scanning laser microscopy. The eyes from the remaining mice were either placed in 4% PFA and embedded in paraffin-wax, or had the neural retina dissected off and total RNA or protein extracted. Immunofluorescence, in situ hybridization, quantitative reverse transcriptase polymerase chain reaction and Western blotting analysis were employed to locate and determine expression levels of 67LR. Both 67LR mRNA and protein expression showed a characteristic bi-phasic expression pattern which correlated with key stages of retinal vascular development in the murine retina. 67LR showed high expression levels at P1 (P < 0.05) (correlating with superficial vascular plexus formation) and at P7 (P < 0.05) (correlating with deep vascular plexus formation). Conversely, 67LR expression was decreased when active angiogenic activity was lowest. Significantly, optical sectioning of retinal flat-mounts revealed high levels of 67LR expression in developing segments of both superficial and deep capillary plexi, a pattern which co-localized strongly with laminin. 67LR is regulated during post-natal development of the retinal vasculature. High levels of 67LR during the two well-defined phases of retinal capillary plexus formation suggests that this receptor may play an important role in retinal angiogenesis.