991 resultados para RECEPTOR INTERACTIONS
Resumo:
Background The protease-activated receptor 1 (PAR-1), the main platelet receptor for thrombin, represents a novel target for treatment of arterial thrombosis, and SCH 530348 is an orally active, selective, competitive PAR-1 antagonist. We designed TRA.CER to evaluate the efficacy and safety of SCH 530348 compared with placebo in addition to standard of care in patients with non-ST-segment elevation (NSTE) acute coronary syndromes (ACS) and high-risk features. Trial design TRA.CER is a prospective, randomized, double-blind, multicenter, phase III trial with an original estimated sample size of 10,000 subjects. Our primary objective is to demonstrate that SCH 530348 in addition to standard of care will reduce the incidence of the composite of cardiovascular death, myocardial infarction (MI), stroke, recurrent ischemia with rehospitalization, and urgent coronary revascularization compared with standard of care alone. Our key secondary objective is to determine whether SCH 530348 will reduce the composite of cardiovascular death, MI, or stroke compared with standard of care alone. Secondary objectives related to safety are the composite of moderate and severe GUSTO bleeding and clinically significant TIMI bleeding. The trial will continue until a predetermined minimum number of centrally adjudicated primary and key secondary end point events have occurred and all subjects have participated in the study for at least I year. The TRA.CER trial is part of the large phase III SCH 530348 development program that includes a concomitant evaluation in secondary prevention. Conclusion TRA.CER will define efficacy and safety of the novel platelet PAR-1 inhibitor SCH 530348 in the treatment of high-risk patients with NSTE ACS in the setting of current treatment strategies. (Am Heart J 2009; 158:327-34.)
Resumo:
The contribution of kinins to the beneficial effects in cardiovascular risk reductions remains unclear. In this context, the present study examined whether the +9bp/-9 bp polymorphism in bradykinin type 2 receptor gene, predicts hypertension risk in a large urban Brazilian population. Our finding indicated that the -9 bp allele may contribute to hypertension because of increased diastolic pressure.
Resumo:
Resistance training is accompanied by cardiac hypertrophy, but the role of the renin-angiotensin system (RAS) in this response is elusive. We evaluated this question in 36 male Wistar rats divided into six groups: control (n = 6); trained (n = 6); control + losartan (10 mg.kg(-1).day(-1), n = 6); trained + losartan (n = 6); control + high-salt diet (1%, n = 6); and trained + high-salt diet (1%, n = 6). High salt was used to inhibit the systemic RAS and losartan to block the AT(1) receptor. The exercise protocol consisted of: 4 x 12 bouts, 5x/wk during 8 wk, with 65-75% of one repetition maximum. Left ventricle weight-to-body weight ratio increased only in trained and trained + high-salt diet groups (8.5% and 10.6%, P < 0.05) compared with control. Also, none of the pathological cardiac hypertrophy markers, atrial natriuretic peptide, and alpha MHC (alpha-myosin heavy chain)-to-beta MHC ratio, were changed. ACE activity was analyzed by fluorometric assay (systemic and cardiac) and plasma renin activity (PRA) by RIA and remained unchanged upon resistance training, whereas PRA decreased significantly with the high-salt diet. Interestingly, using Western blot analysis and RT-PRC, no changes were observed in cardiac AT(2) receptor levels, whereas the AT(1) receptor gene (56%, P < 0.05) and protein (31%, P < 0.05) expressions were upregulated in the trained group. Also, cardiac ANG II concentration evaluated by ELISA remained unchanged (23.27 +/- 2.4 vs. 22.01 +/- 0.8 pg/mg, P > 0.05). Administration of a subhypotensive dose of losartan prevented left ventricle hypertrophy in response to the resistance training. Altogether, we provide evidence that resistance training-induced cardiac hypertrophy is accompanied by induction of AT(1) receptor expression with no changes in cardiac ANG II, which suggests a local activation of the RAS consistent with the hypertrophic response.
Resumo:
This study provides an investigation of the availability of octyl salicylate (OS), a common sunscreen agent, from liquid paraffin and the effect of OS on skin permeability. A model membrane system to isolate the vehicle effect from membrane permeability has been developed. Partitioning of OS between liquid paraffin and aqueous receptor phases was conducted. Partition coefficients increased with increase in OS concentration. A range of OS concentrations in liquid paraffin was diffused across human epidermis and synthetic membranes into 4% bovine serum albumin in phosphate-buffered saline and 50% ethanol. Absorption profiles of OS obtained from silicone and low-density polyethylene (LDPE) membranes were similar to each other but higher than for the high-density polyethylene [HDPE (3 times)] membrane and human epidermis (15 times). The steady state fluxes and apparent permeability coefficients (K-p') obtained from the diffusion studies showed the same trends with all membranes, except for the HDPE membrane which showed greater increase in flux and K-p' at concentrations above 30%. IR spectra showed that several bands of OS were shifted with concentrations, and the molecular models further suggested that the main contribution to the self-association is from non-1,4 van der Waals interactions.
Resumo:
Purpose The third-generation nonsteroidal aromatase inhibitors (AIs) are increasingly used as adjuvant and first-line advanced therapy for postmenopausal, hormone receptor-positive (HR +) breast cancer. Because many patients subsequently experience progression or relapse, it is important to identify agents with efficacy after AI failure. Materials and Methods Evaluation of Faslodex versus Exemestane Clinical Trial (EFECT) is a randomized, double-blind, placebo controlled, multicenter phase III trial of fulvestrant versus exemestane in postmenopausal women with HR + advanced breast cancer (ABC) progressing or recurring after nonsteroidal AI. The primary end point was time to progression (TTP). A fulvestrant loading-dose (LD) regimen was used: 500 mg intramuscularly on day 0, 250 mg on days 14, 28, and 250 mg every 28 days thereafter. Exemestane 25 mg orally was administered once daily. Results A total of 693 women were randomly assigned to fulvestrant (n = 351) or exemestane ( n = 342). Approximately 60% of patients had received at least two prior endocrine therapies. Median TTP was 3.7 months in both groups ( hazard ratio = 0.963; 95% CI, 0.819 to 1.133; P = .6531). The overall response rate ( 7.4% v 6.7%; P = .736) and clinical benefit rate ( 32.2% v 31.5%; P = .853) were similar between fulvestrant and exemestane respectively. Median duration of clinical benefit was 9.3 and 8.3 months, respectively. Both treatments were well tolerated, with no significant differences in the incidence of adverse events or quality of life. Pharmacokinetic data confirm that steady-state was reached within 1 month with the LD schedule of fulvestrant. Conclusion Fulvestrant LD and exemestane are equally active and well-tolerated in a meaningful proportion of postmenopausal women with ABC who have experienced progression or recurrence during treatment with a nonsteroidal AI.
Resumo:
While many studies have addressed the direct effects of 1 alpha,25(OH)(2)D(3) on breast cancer (BC) cells, stromal-epithelial interactions, which are important for the tumor development, have been largely ignored. In addition, high concentrations of the hormone, which cannot be attained in vivo, have been used. Our aim was to establish a more physiological breast cancer model, represented by BC tissue slices, which maintain epithelial-mesenchymal interactions, cultured with a relatively low 1 alpha,25(OH)(2)D(3) concentration, in order to evaluate the vitamin D pathway. Freshly excised human BC samples were sliced and cultured in complete culture media containing vehicle, 0.5 nM or 100 nM 1 alpha,25(OH)(2)D(3) for 24 h. BC slices remained viable for at least 24 h, as evaluated by preserved tissue morphology in hematoxylin and eosin (HE) stained sections and bromodeoxyuridine (BrdU) incorporation by 10% of tumor cells. VDR mRNA expression was detected in all samples and CYP24A1 mRNA expression was induced by 1 alpha,25(OH)(2)D(3) in both concentrations (but mainly with 100 nM). Our results indicate that the vitamin D signaling pathway is functional in BC slices, a model which preserves stromal-epithelial interactions and mimics in vivo conditions. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Purpose We evaluated the involvement of angiotensin II (AngII)-dependent pathways in melanoma growth, through the pharmacological blockage of AT1 receptor by the antihypertensive drug losartan (LOS). Results We showed immunolabeling for both AngII and the AT1 receptor within the human melanoma microenvironment. Like human melanomas, we showed that murine melanomas also express the AT1 receptor. Growth of murine melanoma, both locally and at distant sites, was limited in mice treated with LOS. The reduction in tumor growth was accompanied by a twofold decrease in tumorassociated microvessel density and by a decrease in CD31 mRNA levels. While no differences were found in the VEGF expression levels in tumors from treated animals, reduction in the expression of the VEGFR1 (Flt-1) at the mRNA and protein levels was observed. We also showed downregulation of mRNA levels of both Flt-4 and its ligand, VEGF-C. Conclusions Together, these results show that blockage of AT1 receptor signaling may be a promising anti-tumor strategy, interfering with angiogenesis by decreasing the expression of angiogenic factor receptors.
Resumo:
Neural phase signaling has gained attention as a putative coding mechanism through which the brain binds the activity of neurons across distributed brain areas to generate thoughts, percepts, and behaviors. Neural phase signaling has been shown to play a role in various cognitive processes, and it has been suggested that altered phase signaling may play a role in mediating the cognitive deficits observed across neuropsychiatric illness. Here, we investigated neural phase signaling in two mouse models of cognitive dysfunction: mice with genetically induced hyperdopaminergia [dopamine transporter knock-out (DAT-KO) mice] and mice with genetically induced NMDA receptor hypofunction [NMDA receptor subunit-1 knockdown (NR1-KD) mice]. Cognitive function in these mice was assessed using a radial-arm maze task, and local field potentials were recorded from dorsal hippocampus and prefrontal cortex as DAT-KO mice, NR1-KD mice, and their littermate controls engaged in behavioral exploration. Our results demonstrate that both DAT-KO and NR1-KD mice display deficits in spatial cognitive performance. Moreover, we show that persistent hyperdopaminergia alters interstructural phase signaling, whereas NMDA receptor hypofunction alters interstructural and intrastructural phase signaling. These results demonstrate that dopamine and NMDA receptor dependent glutamate signaling play a critical role in coordinating neural phase signaling, and encourage further studies to investigate the role that deficits in phase signaling play in mediating cognitive dysfunction.
Resumo:
Objectives: To examine the effects of triiodothyronine (T(3)), 17 beta-estradiol (E(2)), and tamoxifen (TAM) on transforming growth factor (TGF)-alpha gene expression in primary breast cancer cell cultures and interactions between the different treatments. Methods and results: Patients included in the study (no.=12) had been newly diagnosed with breast cancer. Fresh human breast carcinoma tissue was cut into 0.3-mm slices. These slices were placed in six 35-mm dishes on 2-ml organ culture medium. Dishes received the following treatments: dish 1: ethanol; dish 2: T(3); dish 3: T(3)+TAM; dish 4: TAM; dish 5: E(2); dish 6: E(2)+TAM. TGF-alpha mRNA content was normalized to glyceraldehyde-3-phosphate dehydrogenase mRNA levels. All tissues included in this study were positive for estrogen receptor (ER) and thyroid hormone receptor expression. Treatment with T(3) for 48 h significantly increased TGF-alpha mRNA levels compared to controls (15-fold), and concomitant treatment with TAM reduced expression to 3.4-fold compared to controls. When only TAM was added to the culture medium, TGF-alpha mRNA expression increased 5.3-fold, significantly higher than with all other treatment modalities. Conclusion: We demonstrate that TGF-alpha mRNA expression is more efficiently upregulated by T(3) than E(2). Concomitant treatment with TAM had a mitigating effect on the T(3) effect, while E(2) induced TGF-alpha upregulation. Our findings show some similarities between primary culture and breast cancer cell lines, but also some important differences: a) induction of TGF-alpha, a mitogenic protein, by TAM; b) a differential effect of TAM that may depend on relative expression of ER alpha and beta; and c) supraphysiological doses of T3 may induce mitogenic signals in breast cancer tissue under conditions of low circulating E(2).. Endocrinol. Invest. 31: 1047-1051, 2008) (c) 2008, Editrice Kurtis
Resumo:
To date, several activating mutations have been discovered in the common signal-transducing subunit (h beta c) of the receptors for human granulocyte-macrophage colony-stimulating factor, interleukin-3, and interleukin-5. Two of these, Fl Delta and 1374N, result in a 37 amino acid duplication and a single amino acid substitution in the extracellular domain of h beta c, respectively. A third, V449E, results in a single amino acid substitution in the transmembrane domain, Previous studies comparing the activity of these mutants in different hematopoietic cell lines imply that the transmembrane and extracellular mutations act by different mechanisms and suggest the requirement for cell type-specific molecules in signalling. To characterize the ability of these mutant hpc subunits to mediate growth and differentiation of primary cells and hence investigate their oncogenic potential, we have expressed all three mutants in primary murine hematopoietic cells using retroviral transduction. It is shown that, whereas expression of either extracellular hpc mutant confers factor-independent proliferation and differentiation on cells of the neutrophil and monocyte lineages only, expression of the transmembrane mutant does so on these lineages as well as the eosinophil, basophil, megakaryocyte, and erythroid lineages, Factor-independent myeloid precursors expressing the transmembrane mutant display extended proliferation in liquid culture and in some cases yielded immortalized cell lines. (C) 1997 by The American Society of Hematology.
Resumo:
This study examined group and individual factors that facilitate changes in cooperation and learning outcomes in trained and untrained work groups of elementary school-age children. The study had two foci. The first was to determine if the cooperative behaviors and interactions of children in classroom groups who were trained in cooperative learning skins were different from those of children who were given no training, and the second was to investigate small group interactions and achievement in these groups over time. The results showed that there were observable differences between student interactions in the two conditions and these differences were maintained over time. Compared with children in the untrained groups, those in the trained groups were consistently more cooperative and helpful to each other; they actively tried to involve each other in the learning task by using language which was more inclusive (e.g., frequent use of ''we''), and they gave more explanations to assist each other as they worked together. It appeared that as the children worked together over time, they became more responsive to the learning needs of each other. Furthermore, the children in the trained groups performed significantly better on the learning outcomes questionnaire than those in the untrained groups. (C) 1997 Society for the Study of School Psychology. Published by Elsevier Science Ltd.
Resumo:
Vitamin D (VD), is a steroid hormone with multiple functions in the central nervous system (CNS), producing numerous physiological effects mediated by its receptor (VDR). Clinical and experimental studies have shown a link between VD dysfunction and epilepsy. Along these lines, the purpose of our work was to analyze the relative expression of VDR mRNA in the hippocampal formation of rats during the three periods of pilocarpine-induced epilepsy. Male Wistar rats were divided into five groups: (1) control group; rats that received saline 0.9%, i.p. and were killed 7 days after its administration (CTRL, n = 8), (2) SE group; rats that received pilocarpine and were killed 4 h after SE (SE, n = 8), (3) Silent group-7 days; rats that received pilocarpine and were killed 7 days after SE (SIL 7d, n = 8), (4) Silent group-14 days; rats that received pilocarpine and were killed 14 days after SE (SIL 14d, n = 8), (5) Chronic group; rats that received pilocarpine and were killed 60 days after the first spontaneous seizure, (chronic, n = 8). The relative expression of VDR mRNA was determined by real-time PCR. Our results showed an increase of the relative expression of VDR mRNA in the SIL 7 days, SIL 14 days and Chronic groups, respectively (0.060 +/- 0.024; 0.052 +/- 0.035; 0.085 +/- 0.055) when compared with the CTRL and SE groups (0.019 +/- 0.017; 0.019 +/- 0.025). These data suggest the VDR as a possible candidate participating in the epileptogenesis process of the pilocarpine model of epilepsy. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
This paper describes the synthesis of 3-amino-3-(4-chlorophenyl)propanoic acid and the corresponding phosphonic and sulfonic acids, lower homologues of baclofen, phaclofen and saclofen respectively. The chlorinated acids were all weak specific antagonists of GABA at the GABAB receptor, with the sulfonic acid (pA(2) 4.0) being stronger than the phosphonic acid (pA(2) 3.8) and carboxylic acid (pA(2) 3.5).
Resumo:
Conotoxins are small, cysteine-rich peptides isolated from the venom of Conus spp. of predatory marine snails, which selectively target specific receptors and ion channels critical to the functioning of the neuromuscular system. alpha-Conotoxins PnIA and PnIB are both 16-residue peptides (differing in sequence at only two positions) isolated from the molluscivorous snail Conus pennaceus. In contrast to the muscle-selective alpha-conotoxin GI from Conus geographus, PnIA and PnIB block the neuronal nicotinic acetylcholine receptor (nAChR). Here, we describe the crystal structure of PnIB, solved at a resolution of 1.1 Angstrom and phased using the Shake-and-Bake direct methods program. PnIB crystals are orthorhombic and belong to the space group P2(1)2(1)2(1) with the following unit cell dimensions: a = 14.6 Angstrom, b = 26.1 Angstrom, and c = 29.2 Angstrom. The final refined structure of alpha-conotoxin PnIB includes all 16 residues plus 23 solvent molecules and has an overall R-factor of 14.7% (R-free of 15.9%). The crystal structures of the alpha-conotoxins PnIB and PnIA are solved from different crystal forms, with different solvent contents. Comparison of the structures reveals them to be very similar, showing that the unique backbone and disulfide architecture is not strongly influenced by crystal lattice constraints or solvent interactions. This finding supports the notion that this structural scaffold is a rigid support for the presentation of important functional groups. The structures of PnIB and PnIA differ in their shape and surface charge distribution from that of GI.