558 resultados para RADII


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent international initiatives have promoted a number of different approaches to identify marine Important Bird and biodiversity Areas (IBAs), which are important areas for foraging, migrating or over-wintering seabirds. The 'Foraging Radius Approach' is one of these and uses known foraging range and habitat preferences to predict the size and location of foraging areas around breeding colonies. Here we assess the performance of the Foraging Radius Approach using GPS tracking data from six seabird species with a variety of foraging modes. For each species we compared the population home-range areas of our six study species with the home-range areas defined using the Foraging Radius Approach. We also assessed whether basic information on depth preferences from tracking data could improve these home-range area estimates. Foraging Radius Approach home-range areas based on maximum foraging radii encompassed the entire population home-range of five out of six of our study species but overestimated the size of the population home-range area in every case. The mean maximum foraging radius overestimated the population home-range areas by a factor of 4-14 for five of the six species whilst the mean foraging radius overestimated the population home-range area for half of the species and underestimated for the rest. In the absence of other data, the Foraging Radius Approach appears to provide a reasonable basis for preliminary marine IBA identification. We suggest that using the mean value of all previously reported maximum foraging radii, informed by basic depth preferences provides the most appropriate prediction, balancing the needs of seabirds with efficient use of marine space.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Integral field unit spectrographs allow the 2D exploration of the kinematics and stellar populations of galaxies, although they are generally restricted to small fields-of-view. Using the large field-of-view of the DEIMOS multislit spectrograph on Keck and our Stellar Kinematics using Multiple Slits technique, we are able to extract sky-subtracted stellar light spectra to large galactocentric radii. Here, we present a new DEIMOS mask design named SuperSKiMS that explores large spatial scales without sacrificing high spatial sampling. We simulate a set of observations with such a mask design on the nearby galaxy NGC 1023, measuring stellar kinematics and metallicities out to where the galaxy surface brightness is orders of magnitude fainter than the sky. With this technique we also reproduce the results from literature integral field spectroscopy in the innermost galaxy regions. In particular, we use the simulated NGC 1023 kinematics to model its total mass distribution to large radii, obtaining comparable results with those from published integral field unit observation. Finally, from new spectra of NGC 1023, we obtain stellar 2D kinematics and metallicity distributions that show good agreement with integral field spectroscopy results in the overlapping regions. In particular, we do not find a significant offset between our Stellar Kinematics using Multiple Slits and the ATLAS3D stellar velocity dispersion at the same spatial locations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reactive nitrogen (Nr=NO, NO2, HONO) and volatile organic carbon emissions from oil and gas extraction activities play a major role in wintertime ground-level ozone exceedance events of up to 140 ppb in the Uintah Basin in eastern Utah. Such events occur only when the ground is snow covered, due to the impacts of snow on the stability and depth of the boundary layer and ultraviolet actinic flux at the surface. Recycling of reactive nitrogen from the photolysis of snow nitrate has been observed in polar and mid-latitude snow, but snow-sourced reactive nitrogen fluxes in mid-latitude regions have not yet been quantified in the field. Here we present vertical profiles of snow nitrate concentration and nitrogen isotopes (δ15N) collected during the Uintah Basin Winter Ozone Study 2014 (UBWOS 2014), along with observations of insoluble light-absorbing impurities, radiation equivalent mean ice grain radii, and snow density that determine snow optical properties. We use the snow optical properties and nitrate concentrations to calculate ultraviolet actinic flux in snow and the production of Nr from the photolysis of snow nitrate. The observed δ15N(NO3-) is used to constrain modeled fractional loss of snow nitrate in a snow chemistry column model, and thus the source of Nr to the overlying boundary layer. Snow-surface δ15N(NO3-) measurements range from -5‰ to 10‰ and suggest that the local nitrate burden in the Uintah Basin is dominated by primary emissions from anthropogenic sources, except during fresh snowfall events, where remote NOx sources from beyond the basin are dominant. Modeled daily-averaged snow-sourced Nr fluxes range from 5.6-71x107 molec cm-2 s-1 over the course of the field campaign, with a maximum noon-time value of 3.1x109 molec cm-2 s-1. The top-down emission estimate of primary, anthropogenic NOx in the Uintah and Duchesne counties is at least 300 times higher than the estimated snow NOx emissions presented in this study. Our results suggest that snow-sourced reactive nitrogen fluxes are minor contributors to the Nr boundary layer budget in the highly-polluted Uintah Basin boundary layer during winter 2014.