1000 resultados para Pyrethrum (Plant)
Resumo:
East African sun-dried fish dipped for 4 seconds in different solutions of pyrethrum and piperonyl butoxide were analysed for insecticide residue limits. All analyses showed residues above the FAO/WHO MRL; exceeding factors of between 7.6 (22.9 ppm) and 1.6 (5.3 ppm) were found for pyrethrum while exceeding factors between 5.1 (102 ppm) and 1.7 (33.1 ppm) were common for piperonyl butoxide after 6 months storage at ambient temperature. All insecticide treated fish, regardless of dip concentration, were observed to be less susceptible to infestation by Dermestes maculatus than samples of untreated fish. No dry weight losses due to insect infestation were recorded, however moisture evaporation caused weight losses between 6 and 8% during the period. Further investigations showed that careful handling and a dip concentration more in accordance with FAO/WHO MRL than the commercial practice will reduce the cost of insecticides from K.sh. 0.72 to K.sh. 0.23 per kg pyrethrum treated fish.
Resumo:
Aim of the study: Previously, we reported that the petroleum ether fraction, RC-1, and EtOAc fraction, RC-2, of the medicinal plant Rhus chinensis showed potent anti-HIV-1 activities. To address anti-HIV-1 constituents of RC-1 and RC-2, 17 compounds were
Resumo:
This paper presents the results of a project aimed at minimising fuel usage while maximising steam availability in the power and steam plant of a large newsprint mill. The approach taken was to utilise the better regulation and plant wide optimisation capabilities of Advanced Process Control, especially Model Predictive Control (MPC) techniques. These have recently made their appearance in the pulp and paper industry but are better known in the oil and petrochemical industry where they have been used for nearly 30 years. The issue in the power and steam plant is to ensure that sufficient steam is available when the paper machines require it and yet not to have to waste too much steam when one or more of the machines suffers an outage. This is a problem for which MPC is well suited. It allows variables to be kept within declared constraint ranges, a feature which has been used, effectively, to increase the steam storage capacity of the existing plant. This has resulted in less steam being condensed when it is not required and in significant reductions in the need for supplementary firing. The incidence of steam being dump-condensed while also supplementary firing the Combined Heat & Power (CHP) plant has been reduced by 95% and the overall use of supplementary firing is less than 30% of what it was. In addition the plant runs more smoothly and requires less operator time. The yearly benefit provided by the control system is greater than £200,000, measured in terms of 2005 gas prices.
Resumo:
Sexual eukaryotes reproduce via the meiotic cell division, where ploidy is halved and homologous chromosomes undergo reciprocal genetic exchange, termed crossover (CO). CO frequency has a profound effect on patterns of genetic variation and species evolution. Relative CO rates vary extensively both within and between plant genomes. Plant genome size varies by over 1000-fold, largely due to differential expansion of repetitive sequences, and increased genome size is associated with reduced CO frequency. Gene versus repeat sequences associate with distinct chromatin modifications, and evidence from plant genomes indicates that this epigenetic information influences CO patterns. This is consistent with data from diverse eukaryotes that demonstrate the importance of chromatin structure for control of meiotic recombination. In this review I will discuss CO frequency patterns in plant genomes and recent advances in understanding recombination distributions.
Resumo:
In aquatic ecosystems, macrophytes and phytoplankton are main primary producers, in which macrophyte plays an important role in maintaining clear water state, while phytoplankton often dominates in turbid waterbodies. In the present study, the growth and photosynthetic activity of the submerged aquatic plant Ceratophyllum oryzetorum Kom. in different cell densities of cyanobacterial bloom are studied. The results show that the plant length and fresh mass of C. oryzetorum are promoted by low cyanobacterial cell densities. Medium and high cyanobacterial cell densities, on the contrary, act as inhibitory. Furthermore, the photosynthetic activity of C. oryzetorum is strongly inhibited by high cyanobacterial cell densities. To a certain extent, the growth of cyanobacteria is inhibited by C. oryzetorum, but no significant effect is found in this study.
Resumo:
The seasonal variations of estrogenic compounds and the estrogenicities of influent and effluent were investigated by OF chemical analysis and in vitro assay in a municipal sewage treatment plant in Wuhan (China). The levels of eight estrogenic compounds, including 17 beta-estradiol (E-2) estrone (E-1), estriol (E-3) diethylstilbestrol (DES), 17 alpha-ethinylestradiol, nonylphenol (NP), 4-tert-octylphenol (OP), and bisphenol A (BPA), were measured by gas chromatography-mass spectrometry. Total estrogenic activity of sewage was quantitatively assessed using primary cultured hepatocytes of male Megalobrama amblycephala Yih using vitellogenin as a biomarker. The E-2 equivalents (EEQs) obtained from the chemical analysis were consistent with those measured by bioassay. The natural (E-1, E-2, and E-3) and synthetic (DES) estrogens, as well as NP, were the main contributors of the total EEQs of influent and effluent in the present study. The levels of natural estrogens E-1 and E-3 in the influent and effluent were higher in winter than in summer, whereas the situation for NP and OP was the reverse. The levels of E-2, DES, and BPA varied little among different seasons. 17 alpha-Ethinylestradiol was not detected in the influent and effluent. The estrogenicities of the influent and of the primary and secondary effluents were all higher in summer than in winter. Estrogenic activities in winter mainly originated from natural (E-1, E-2, and E-3) and synthetic (DES) estrogens, whereas the increase of EEQs in summer was contributed by NP The results from chemical analysis and bioassay demonstrate that estrogenic compounds cannot be entirely removed by the existing sewage treatment process, which should be further improved to protect aquatic ecosystems and human health.
Resumo:
We examined the effect of different plant architecture types on epiphytic macroinvertebrates of a shallow macrophyte-dominated lake in China. Macroinvertebrates were sampled from four dominant submersed macrophytes in the lake - two dissected plants (Myriophyllum spicatum L. and Ceratophyllum demersum L.) and two undissected plants (Potamogeton maackianus A. Benn. and Vallisneria spiralis L.). Macro invertebrate richness showed significant differences among four submersed macrophyte habitats, and higher density per g of dry plant were associated with dissected plants than undissected plants. The average abundance in dissected plants was as three-six times as in undissected plants. The biodiversity of epiphytic macroinvertebrates was higher in dissected plants than undissected plants. Our results suggest that dissected plants provide different habitat for macroinvertebrates than dissected plant, and this concurs with the hypothesis that the former could support more epiphytic macroinvertebrates than the latter.
Resumo:
The distribution of vascular plant species richness along an altitudinal gradient and their relationships with environmental variables, including slope, aspect, bank (flooding) height, and river width of the Xiangxi River, Hubei Province, were examined. Total vascular plant species richness changed with elevation: it increased at lower elevations, reached a maximum in the midreaches and decreased thereafter. In particular, tree and herbaceous species richness were related to altitude. Correlation analysis (Kendall's tau) between species richness and environmental variables indicated that the change in species richness in the riparian zone was determined by riparian environmental factors and characteristics of regional vegetation distribution along the altitudinal gradient. The low species richness at lower elevations resulted from seasonal flooding and human activities - agriculture and fuel collection - and the higher. Species richness ill (he midreaches reflected transitional zones ill natural vegetation types that had had little disturbance. These results oil species distribution in the riparian community could he utilized as a reference for restoration efforts to improve water quality of the emerging reservoir resulting from the Three Gorges Hydroelectric Dam project.
Resumo:
The present study was conducted to assess the potential toxicity of the effluent from a large sewage treatment plant (GBD-STP) in Beijing. Japanese medakas (Oryzias latipes) at reproduction active period were exposed to a serial of graded concentrations of the effluent or 100 ng l(-1) of 17-alpha-ethinylestradiol (EE2, positive control). Growth, gonadosomatic index (GSI), hepatosomatic index (HSI), reproductive success, induction potency of vitellogenin (VTG) in male fish and that of 7-ethoxyresorufin-o-deethylase activity (EROD) in male fish liver were used as test endpoints. The growth suppression of fish was observed in a dose-dependent manner, resulting in significant differences in both body length and body weight of medaka above 5% effluent. This effluent can inhibit the growth of gonad of medakas and are more sensitive to male than to female. At exposure concentration of 40% and higher, there was an unexpected decrease of HSI values, which may be resulted from sub-lethal toxicity of effluent to fish liver. VTG of plasma in males were induced in all exposure concentration levels, but not in a dose-dependent manner. The concentration of 5% effluent would be the lowest observed adverse effect level (LOAEL) affecting reproductive success when examining fertile individuals, fecundity and fertilization rate. The overt CYP1A response and higher reproductive toxicity may be indicative of low process efficiency of this STP. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
In this study, we investigated the effects of animal-plant protein ratio in extruded and expanded diets on nutrient digestibility, nitrogen and energy budgets of juvenile soft-shelled turtle (Pelodiscus sinensis). Four extruded and expanded feeds (diets 1-4) were formulated with different animal-plant protein ratios (diet 1, 1.50:1; diet 2, 2.95:1; diet 3, 4.92:1; diet 4, 7.29:1). The apparent digestibility coefficients (ADCs) of dry matter and crude lipid for diet 1 were significantly lower than those for diets 2-4. There was no significant difference in crude protein digestibility among diets 1-4. The ADC of carbohydrate was significantly increased with the increase in animal-plant protein. Although nitrogen intake rate, faecal nitrogen loss rate and excretory nitrogen loss rate of turtles fed diet 1 were significantly higher than those fed diets 2-4, nitrogen retention rate, net protein utilization and biological value of protein in these turtles were significantly lower than those fed diets 2-4. In addition, energy intake rate, excretory energy loss rate and heat production rate of turtles fed diet 1 were also significantly higher than those fed diets 2-4. Faecal energy loss was significantly reduced with the increase in the animal-plant protein ratio. The ADC of energy and assimilation efficiency of energy significantly increased with a higher animal-plant protein ratio. The growth efficiency of energy in the group fed diet 1 was significantly lower than those in the groups fed diets 2-4. Together, our results suggest that the optimum animal-plant protein ratio in extruded and expanded diets is around 3:1.
Resumo:
Experiments in tanks and cages were conducted to examine the effects of stocking density and body size of the Mitten crab (Eriocheir sinensis) on transplanted submersed macrophyte biomass. The early juvenile crab with 7.0 +/-0.6 mm. carapace width (CW) had little effect on plant biomass, regardless of the stocking densities. However, larger crabs (CW: 18.0 +/-2.2,35.0 +/-3.6, and 60.0 +/-5.7 mm) significantly influenced plant biomass, especially at large stocking densities. Predictive models, using crab body size and stocking density, were generated to demonstrate effect of the mitten crab on the changes Of plant biomass. The results indicate that dense mitten crab populations may adversely affect aquatic plant communities, particularly when its animal food resources are scarce.
Resumo:
Six isonitrogenous (gross protein content 35%) and isoenergetic (gross energy content 17 kJ g(-1)) diets were formulated to investigate the effects of inclusion of plant proteins on the gibel carp (Carassius auratus gibelio L.). The plant proteins tested were: soybean cake (SBC), potato protein concentrate (PPC), peanut cake (PNC), cottonseed cake (CSC) and rapeseed cake (RSC). Fish meal (FM) was used as control. In each diet, 27% of the protein was supplied by fish meal, and the rest supplied by the plant protein tested. Each diet was fed to three groups of gibel carp for 8 weeks in a recirculation system. Specific growth rate (SGR) in fish fed the control diet was significantly higher than those in the other groups, and SGR in fish fed the PPC was significantly lower than in fish fed other plant proteins. There was no significant difference in SGR among the other groups. Feeding rates were ranked in the order: RSC > CSC > FM > PNC > SBC > PPC. Conversion efficiency was highest in groups fed FM, SBC and PNC, followed by groups fed CSC and RSC, and was lowest in the group fed PPC. The fish fed PPC showed lower protein retention than those fed FM and SBC. FM showed highest energy retention while PPC showed lowest, There was no significant relationship between SGR and intake of digestible protein (g g(-1) day(-1)), digestible lysine (g g(-1) day(-1)), digestible methionine (g g(-1) day(-1)) or digestible total essential amino acids (g g(-1) day(-1)), suggesting that the differences in SGR could not alone account for any of these variables.