994 resultados para Pulp, Helmut Krausser, Cannibali, Berlino
Resumo:
In this paper, composites from polypropylene and Kraft pulp (from Pinus radiata) were prepared. Phenyl isocyanate, unblocked and phenol blocked derivatives of 4,4`-methylenebis (phenyl isocyanate) (MDI) were used as coupling agents and the mechanical properties of the obtained composites analyzed. The results showed that the addition of such compatibilizers readily improved the tensile and flexural strengths of the composites. However, no significant variation in the mechanical properties was observed for composite formulations comprising different isocyanate compounds. Accordingly, the chemical structure of isocyanate derivatives did not affect extensively the mechanical properties of MDI-coupled pine fiber reinforced composites. These results were similar to those obtained in previous studies regarding the efficiency of organosilane coupling agents. In comparison to monoreactive isocyanates, the addition of MIDI increased considerably the mechanical properties of pine fiber-polypropylene composites. The mechanical anchoring of polymeric PP chains onto the irregular reinforcement surface supported this result. Non-isothermal DSC analysis showed a slowing effect of MDI on the crystallization kinetics of the coupled composites. This may have been the result of diminished polymer chain mobility in the matrix due to mechanical anchoring onto the fiber surface. Considering these results, the occurrence of strong bonds between the composite components was stated, rather than the unique existence of Van der Waals interactions among the non-polar structures. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Several studies using vegetable fibers as the exclusive reinforcement in fiber-cement composites have shown acceptable mechanical performance at the first ages. However, after the exposure to accelerated aging tests, these composites have shown significant reduction in the toughness or increase in embrittlement. This was mainly attributed to the improved fiber-matrix adhesion and fiber mineralization after aging process. The objective of the present research was to evaluate composites produced by the slurry dewatering technique followed by pressing and air curing, reinforced with combinations of polypropylene fibers and sisal kraft pulp at different pulp freeness. The physical properties, mechanical performance, and microstructural characteristics of the composites were evaluated before and after accelerated and natural aging. Results showed the great contribution of pulp refinement on the improvement of the mechanical strength in the composites. Higher intensities of refinement resulted in higher modulus of rupture for the composites with hybrid reinforcement after accelerated and natural aging. The more compact microstructure was due to the improved packing of the mineral particles with refined sisal pulp. The toughness of the composites after aging was maintained in relation to the composites at 28 days of cure.
Resumo:
Tropical countries, such as Brazil and Colombia, have the possibility of using agricultural lands for growing biomass to produce bio-fuels such as biodiesel and ethanol. This study applies an energy analysis to the production process of anhydrous ethanol obtained from the hydrolysis of starch and cellulosic and hemicellulosic material present in the banana fruit and its residual biomass. Four different production routes were analyzed: acid hydrolysis of amylaceous material (banana pulp and banana fruit) and enzymatic hydrolysis of lignocellulosic material (flower stalk and banana skin). The analysis considered banana plant cultivation, feedstock transport, hydrolysis, fermentation, distillation, dehydration, residue treatment and utility plant. The best indexes were obtained for amylaceous material for which mass performance varied from 346.5 L/t to 388.7 L/t, Net Energy Value (NEV) ranged from 9.86 MJ/L to 9.94 MJ/L and the energy ratio was 1.9 MJ/MJ. For lignocellulosic materials, the figures were less favorable: mass performance varied from 86.1 to 123.5 L/t, NEV from 5.24 10 8.79 MJ/L and energy ratio from 1.3 to 1.6 MJ/MJ. The analysis showed, however, that both processes can be considered energetically feasible. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Paper products show dimensional changes when subjected to moisture content modification. Hygroexpansivity was investigated in a commercial paper machine operating at 1256 m/min by a set of measurements on 75 g/m(2) reprographic bleached eucalyptus pulp paper samples. The present work shows hygroexpansivity development in different sections of the paper machine along the manufacturing direction. The measurement results demonstrate the effects of papermaking process operations on paper hygroexpansivity and lead to the confirmation of fiber orientation degree, drying restraint and shrinkage and paper tension as significant influencing factors. Structural, strength and elastic properties of paper were also measured as a function of machine direction position and presented for discussion purposes.
Resumo:
Mixed models have become important in analyzing the results of experiments, particularly those that require more complicated models (e.g., those that involve longitudinal data). This article describes a method for deriving the terms in a mixed model. Our approach extends an earlier method by Brien and Bailey to explicitly identify terms for which autocorrelation and smooth trend arising from longitudinal observations need to be incorporated in the model. At the same time we retain the principle that the model used should include, at least, all the terms that are justified by the randomization. This is done by dividing the factors into sets, called tiers, based on the randomization and determining the crossing and nesting relationships between factors. The method is applied to formulate mixed models for a wide range of examples. We also describe the mixed model analysis of data from a three-phase experiment to investigate the effect of time of refinement on Eucalyptus pulp from four different sources. Cubic smoothing splines are used to describe differences in the trend over time and unstructured covariance matrices between times are found to be necessary.
Resumo:
Eucalyptus is the dominant and most productive planted forest in Brazil, covering around 3.4 million ha for the production of charcoal, pulp, sawtimber, timber plates, wood foils, plywood and for building purposes. At the early establishment of the forest plantations, during the second half of the 1960s, the eucalypt yield was 10 m(3) ha(-1) y(-1). Now, as a result of investments in research and technology, the average productivity is 38 m3 ha(-1) y(-1). The productivity restrictions are related to the following environmental factors, in order of importance: water deficits > nutrient deficiency > soil depth and strength. The clonal forests have been fundamental in sites with larger water and nutrient restrictions, where they out-perform those established from traditional seed-based planting stock. When the environmental limitations are small the productivities of plantations based on clones or seeds appear to be similar. In the long term there are risks to sustainability, because of the low fertility and low reserves of primary minerals in the soils, which are, commonly, loamy and clayey oxisols and ultisols. Usually, a decline of soil quality is caused by management that does not conserve soil and site resources, damages soil physical and chemical characteristics, and insufficient or unbalanced fertiliser management. The problem is more serious when fast-growing genotypes are planted, which have a high nutrient demand and uptake capacity, and therefore high nutrient output through harvesting. The need to mobilise less soil by providing more cover and protection, reduce the nutrient and organic matter losses, preserve crucial physical properties as permeability ( root growth, infiltration and aeration), improve weed control and reduce costs has led to a progressive increase in the use of minimum cultivation practices during the last 20 years, which has been accepted as a good alternative to keep or increase site quality in the long term. In this paper we provide a synthesis and critical appraisal of the research results and practical implications of early silvicultural management on long-term site productivity of fast-growing eucalypt plantations arising from the Brazilian context.
Resumo:
We used environmental accounting to evaluate high-intensity clonal eucalyptus production in Sao Paolo, Brazil, converting inputs (environmental, material, and labor) to emergy units so ecological efficiency could be compared on a common basis. Input data were compiled under three pH management scenarios (lime, ash, and sludge). The dominant emergy input is environmental work (transpired water, similar to 58% of total emergy), followed by diesel (similar to 15%); most purchased emergy is invested during harvest (41.8% of 7-year production totals). Where recycled materials are used for pH amendment (ash or sludge instead of lime), we observe marked improvements in ecological efficiency; lime (raw) yielded the highest unit emergy value (UEV = emergy per unit energy in the product = 9.6E + 03 sej J(-1)), whereas using sludge and ash (recycled) reduced the UEV to 8.9E + 03 and 8.8E + 03 sej J(-1), respectively. The emergy yield ratio was similarly affected, suggesting better ecological return on energy invested. Sensitivity of resource use to other operational modifications (e.g., decreased diesel, labor, or agrochemicals) was small (<3% change). Emergy synthesis permits comparison of sustainability among forest production systems globally. This eucalyptus scheme shows the highest ecological efficiency of analyzed pulp production operations (UEV range = 1.1 to 3.6E + 04 sej J(-1)) despite high operational intensity.
Resumo:
The purpose of this work was to evaluate the effects of ethylene action blockade and cold storage on the ripening of `Golden` papaya fruit. Papayas harvested at maturity stage 1 (up to 15% yellow skin) were evaluated. Half of the fruits, whether treated or not treated with 100 nL L(-1) of 1-methylcyclopropene (1-MCP), were stored at 23A degrees C, while the other half were stored at 11A degrees C for 20 days prior to being stored at 23A degrees C. Non-refrigerated fruits receiving 1-MCP application presented a reduction in respiratory activity, ethylene production, skin color development and pectinmethylesterase activity. Even with a gradual increase in ethylene production at 23A degrees C, fruits treated with 1-MCP maintained a high firmness, but presented a loss of green skin color. Cold storage caused a decrease in ethylene production when fruits were transferred to 23A degrees C. The results suggest that pulp softening is more dependent on ethylene than skin color development, and that some processes responsible for loss of firmness do not depend on ethylene.
Resumo:
Nitrogen (N) and potassium (K) are usually found in higher concentrations than other macronutrients in apple (Malus x domestica Borkh) fruits and are most frequently associated with changes in fruit quality. The aim of this article was to evaluate the effects of N and K fertilization on some fruit quality attributes of Fuji apple. The experiment was conducted at Sao Joaquim, State of Santa Catarina, Brazil, during 2004 and 2005. A factorial design was used with N and K annual fertilizer rates (0, 50, 100, and 200 kg ha(-1) of N and K2O) replicated in three orchards. Fifteen days prior to harvest, three fruit samples were collected from each treatment and site. One sample was used for total soluble solid content (TSS), titratable acidity, pulp firmness, and fruit color parameter analyses, and the other samples were refrigerated in a conventional atmosphere for 3 and 6 months for subsequent determination of fruit quality. Nitrogen fertilization negatively affected fruit color, flesh firmness, and TSS content. These same variables were positively affected by K fertilization, except for flesh firmness.
Resumo:
Despite the importance of Eucalyptus spp. in the pulp and paper industry, functional genomic approaches have only recently been applied to understand wood formation in this genus. We attempted to establish a global view of gene expression in the juvenile cambial region of Eucalyptus grandis Hill ex Maiden. The expression profile was obtained from serial analysis of gene expression (SAGE) library data produced from 3- and 6-year-old trees. Fourteen-base expressed sequence tags (ESTs) were searched against public Eucalyptus ESTs and annotated with GenBank. Altogether 43,304 tags were generated producing 3066 unigenes with three or more copies each, 445 with a putative identity, 215 with unknown function and 2406 without an EST match. The expression profile of the juvenile cambial region revealed the presence of highly frequent transcripts related to general metabolism and energy metabolism, cellular processes, transport, structural components and information pathways. We made a quantitative analysis of a large number of genes involved in the biosynthesis of cellulose, pectin, hemicellulose and lignin. Our findings provide insight into the expression of functionally related genes involved in juvenile wood formation in young fast-growing E. grandis trees.
Resumo:
The carotenoid composition was evaluated during ripening of papaya cv. `Golden` under untreated (control) conditions and treated with ethylene and 1-methylcyclopropene (1-MCP). At the end of the experiments, the total carotenoid content in the control group (2194.4 mu g/100 g) was twice as high as that found in ethylene (1018.1 mu g/100 g) and 1-MCP (654.5 mu g/100 g) gas-treated samples. Separation of 21 carotenoids by HPLC connected to photodiode array and mass spectrometry detectors showed that no minor carotenoids seemed to be particularly favoured by the treatments. Lycopene was the major carotenoid in all untreated and gas-treated samples, ranging from 461.5 to 1321.6 mu g/100 g at the end of the experiments. According to the proposed biosynthetic pathway, lycopene is the central compound, since it is the most abundant carotenoid indicating a high stimulation of its upstream steps during ripening, and it is the source for the synthesis of other derivative compounds, such as beta-cryptoxanthin. The influence of both gas treatments on the carotenoid biosynthetic pathway was considered. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Several epidemiological and research studies suggest that a high intake of foods rich in natural antioxidants increases the antioxidant capacity of the plasma and reduces the risk of some kinds of cancers, heart diseases, and stroke. These health benefits are attributed to a variety of constituents, including vitamins, minerals, fiber, and numerous phytochemicals, such as flavonoids. Thus, in addition to measuring the composition of the usual macronutrients and micronutrients, it seems important to also measure the antioxidant capacity of foods. For this purpose, 28 foods including fruits, vegetables and commercially-frozen fruit pulps were analyzed for antioxidant capacity. The antioxidant capacity of the foods varied from 0.73 to 19.8 mu mol BHT equiv/g. The highest values were observed for wild mulberries (19.8 mu mol BHT equiv/g), acai fruit pulp (18.2 mu mol BHT equiv/g) and watercress (9.6 mu mol BHT equiv/g). The antioxidant capacities are only indicative of the potential of the bioactive compounds; however, these data are important to explore and understand the role of fruit, vegetables and other foods in health promotion. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Cultivar, growing conditions and geographical origin are factors that influence the carotenoid composition in fruits. Because the loquat cultivars evaluated in this study, CentenAria, Mizauto, Mizuho, Mizumo and Nectar de Cristal, have not previously been investigated, the present work was carried out to determine and compare the carotenoid composition of these five loquat cultivars, by applying high-performance liquid chromatography connected to a photodiode array and mass spectrometry detectors (HPLC-PDA-MS/MS). Twenty-five carotenoids were separated on a C(30) column, and 23 of them were identified. All-trans-beta-carotene (19-55%), all-trans-beta-cryptoxanthin (18-28%), 5,6:5`,6`-diepoxy-beta-cryptoxantilin (9-18%) and 5,6-epoxy-beta-cryptoxanthin (7-10%) were the main carotenoids. The total carotenoid content ranged from 196 mu g/100 g (cv. Nectar de Cristal) to 3020 mu g/100 g (CV. Mizumo). The carotenoid profile of cv. Nectar de Cristal was different from the other cultivars, which was in agreement with its cream pulp colour, in contrast to the other four cultivars with orange pulp colour. Cultivars Mizauto, Mizuho, Mizumo and CentenAria showed provitamin A values between 89 and 162 mu g RAE/100 g, and can be considered good source of this provitamin. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The cashew apple (Anacardium occidentale L.) contains phenolic compounds usually related with antioxidant properties. Then, the aim of this study was to investigate its antioxidant capacity. The antioxidant capacity of the hydroalcoholic extract of the cashew apple pulp (EHAlc.) was assessed for the scavenging of the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) by in vitro method and by an in vivo essay. For this essay a 30-day oral (gavage, EHAlc. 200 and 400 mg/kg) study was conducted in Wistar male rats, evaluating hepatic, plasma and brain tissues. In DPPH model, the extract demonstrated antioxidant activity of 95% (largest concentration, 1000 mu g/mL). There were found no relevant peroxidation comparing the treated animals with the control group. However, the treated group presented a lower level of brain lipoperoxidation. Also in the treated animals brain tissue was found the largest amount of polyunsaturated fatty acids (PUFA), mainly docosahexaenoic (DHA). Therqfore, the analyzed extract from cashew apple pulp clone CCP-76 contains effective natural antioxidants, responsible for free radical scavenging in vitro and also for decreasing the brain lipoperoxidation and keeping the PUFAS levels in Wistar rats.
Resumo:
BACKGROUND: Ascorbic acid is a very important compound for plants. It has essential functions, mainly as an antioxidant and growth regulator. Ascorbic acid biosynthesis has been extensively studied, but studies in fruits are very limited. In this work we studied the influence of five enzymes involved in synthesis (L-galactono-1,4-lactone dehydrogenase, GalLDH, EC 1.3.2.3), oxidation (ascorbate oxidase, EC 1.10.3.3, and ascorbate peroxidase, APX, EC and recycling (monodehydroascorbate reductase, EC 1.6.5.4, and dehydroascorbate reductase, DHAR, EC 1.8.5.1) on changes in ascorbic acid content during development and ripening of mangoes (Mangifera indica L. cv. Keitt) and during the ripening of white pulp guavas (Psidium guayava L. cv. Paloma). RESULTS: It was found that there was a balance between the activities of GalLDH, APX and DHAR, both in mangoes and guavas. CONCLUSIONS: Equilibrium between the enzymatic activities of synthesis, catabolism and recycling is important for the regulation of ascorbic acid content in mango and guava. These results have contributed to understanding some of the changes that occur in ascorbic acid levels during fruit ripening. (C) 2008 Society of Chemical Industry.