952 resultados para Protein-phosphorylation
Resumo:
The discovery of cyanobacterial phytochrome histidine kinases, together with the evidence that phytochromes from higher plants display protein kinase activity, bind ATP analogs, and possess C-terminal domains similar to bacterial histidine kinases, has fueled the controversial hypothesis that the eukaryotic phytochrome family of photoreceptors are light-regulated enzymes. Here we demonstrate that purified recombinant phytochromes from a higher plant and a green alga exhibit serine/threonine kinase activity similar to that of phytochrome isolated from dark grown seedlings. Phosphorylation of recombinant oat phytochrome is a light- and chromophore-regulated intramolecular process. Based on comparative protein sequence alignments and biochemical cross-talk experiments with the response regulator substrate of the cyanobacterial phytochrome Cph1, we propose that eukaryotic phytochromes are histidine kinase paralogs with serine/threonine specificity whose enzymatic activity diverged from that of a prokaryotic ancestor after duplication of the transmitter module.
Resumo:
To determine the mechanisms responsible for the termination of Ca2+-activated Cl− currents (ICl(Ca)), simultaneous measurements of whole cell currents and intracellular Ca2+ concentration ([Ca2+]i) were made in equine tracheal myocytes. In nondialyzed cells, or cells dialyzed with 1 mM ATP, ICl(Ca) decayed before the [Ca2+]i decline, whereas the calcium-activated potassium current decayed at the same rate as [Ca2+]i. Substitution of AMP-PNP or ADP for ATP markedly prolonged the decay of ICl(Ca), resulting in a rate of current decay similar to that of the fall in [Ca2+]i. In the presence of ATP, dialysis of the calmodulin antagonist W7, the Ca2+/calmodulin-dependent kinase II (CaMKII) inhibitor KN93, or a CaMKII-specific peptide inhibitor the rate of ICl(Ca) decay was slowed and matched the [Ca2+]i decline, whereas H7, a nonspecific kinase inhibitor with low affinity for CaMKII, was without effect. When a sustained increase in [Ca2+]i was produced in ATP dialyzed cells, the current decayed completely, whereas in cells loaded with 5′-adenylylimidodiphosphate (AMP-PNP), KN93, or the CaMKII inhibitory peptide, ICl(Ca) did not decay. Slowly decaying currents were repeatedly evoked in ADP- or AMP-PNP-loaded cells, but dialysis of adenosine 5′-O-(3-thiotriphosphate) or okadaic acid resulted in a smaller initial ICl(Ca), and little or no current (despite a normal [Ca2+]i transient) with a second stimulation. These data indicate that CaMKII phosphorylation results in the inactivation of calcium-activated chloride channels, and that transition from the inactivated state to the closed state requires protein dephosphorylation.
Resumo:
Impaired insulin secretion is a characteristic of non-insulin-dependent diabetes mellitus (NIDDM). One possible therapeutic agent for NIDDM is the insulinotropic hormone glucagon-like peptide 1 (GLP-1). GLP-1 stimulates insulin secretion through several mechanisms including activation of protein kinase A (PKA). We now demonstrate that the subcellular targeting of PKA through association with A-kinase-anchoring proteins (AKAPs) facilitates GLP-1-mediated insulin secretion. Disruption of PKA anchoring by the introduction of anchoring inhibitor peptides or expression of soluble AKAP fragments blocks GLP-1 action in primary islets and cAMP-responsive insulin secretion in clonal beta cells (RINm5F). Displacement of PKA also prevented cAMP-mediated elevation of intracellular calcium suggesting that localized PKA phosphorylation events augment calcium flux.
Resumo:
Cluster of differentiation antigen 4 (CD4), the T lymphocyte antigen receptor component and human immunodeficiency virus coreceptor, is down-modulated when cells are activated by antigen or phorbol esters. During down-modulation CD4 dissociates from p56lck, undergoes endocytosis through clathrin-coated pits, and is then sorted in early endosomes to late endocytic organelles where it is degraded. Previous studies have suggested that phosphorylation and a dileucine sequence are required for down-modulation. Using transfected HeLa cells, in which CD4 endocytosis can be studied in the absence of p56lck, we show that the dileucine sequence in the cytoplasmic domain is essential for clathrin-mediated CD4 endocytosis. However, this sequence is only functional as an endocytosis signal when neighboring serine residues are phosphorylated. Phosphoserine is required for rapid endocytosis because CD4 molecules in which the cytoplasmic domain serine residues are substituted with glutamic acid residues are not internalized efficiently. Using surface plasmon resonance, we show that CD4 peptides containing the dileucine sequence bind weakly to clathrin adaptor protein complexes 2 and 1. The affinity of this interaction is increased 350- to 700-fold when the peptides also contain phosphoserine residues.
Resumo:
Fission yeast Cdc18, a homologue of Cdc6 in budding yeast and metazoans, is periodically expressed during the S phase and required for activation of replication origins. Cdc18 overexpression induces DNA rereplication without mitosis, as does elimination of Cdc2-Cdc13 kinase during G2 phase. These findings suggest that illegitimate activation of origins may be prevented through inhibition of Cdc18 by Cdc2. Consistent with this hypothesis, we report that Cdc18 interacts with Cdc2 in association with Cdc13 and Cig2 B-type cyclins in vivo. Cdc18 is phosphorylated by the associated Cdc2 in vitro. Mutation of a single phosphorylation site, T104A, activates Cdc18 in the rereplication assay. The cdc18-K9 mutation is suppressed by a cig2 mutation, providing genetic evidence that Cdc2-Cig2 kinase inhibits Cdc18. Moreover, constitutive expression of Cig2 prevents rereplication in cells lacking Cdc13. These findings identify Cdc18 as a key target of Cdc2-Cdc13 and Cdc2-Cig2 kinases in the mechanism that limits chromosomal DNA replication to once per cell cycle.
Resumo:
Cdc48p from Saccharomyces cerevisiae and its highly conserved mammalian homologue VCP (valosin-containing protein) are ATPases with essential functions in cell division and homotypic fusion of endoplasmic reticulum vesicles. Both are mainly attached to the endoplasmic reticulum, but relocalize in a cell cycle-dependent manner: Cdc48p enters the nucleus during late G1; VCP aggregates at the centrosome during mitosis. The nuclear import signal sequence of Cdc48p was localized near the amino terminus and its function demonstrated by mutagenesis. The nuclear import is regulated by a cell cycle-dependent phosphorylation of a tyrosine residue near the carboxy terminus. Two-hybrid studies indicate that the phosphorylation results in a conformational change of the protein, exposing the nuclear import signal sequence previously masked by a stretch of acidic residues.
Resumo:
Budding yeast adjusts to increases in external osmolarity via a specific mitogen-activated protein kinase signal pathway, the high-osmolarity glycerol response (HOG) pathway. Studies with a functional Hog1–green fluorescent protein (GFP) fusion reveal that even under nonstress conditions the mitogen-activated protein kinase Hog1 cycles between cytoplasmic and nuclear compartments. The basal distribution of the protein seems independent of its activator, Pbs2, and independent of its phosphorylation status. Upon osmotic challenge, the Hog1–GFP fusion becomes rapidly concentrated in the nucleus from which it is reexported after return to an iso-osmotic environment or after adaptation to high osmolarity. The preconditions and kinetics of increased nuclear localization correlate with those found for the dual phosphorylation of Hog1–GFP. The duration of Hog1 nuclear residence is modulated by the presence of the general stress activators Msn2 and Msn4. Reexport of Hog1 to the cytoplasm does not require de novo protein synthesis but depends on Hog1 kinase activity. Thus, at least three different mechanisms contribute to the intracellular distribution pattern of Hog1: phosphorylation-dependent nuclear accumulation, retention by nuclear targets, and a kinase-induced export.
Resumo:
The specificity of protein–protein interactions in cellular signaling cascades is dependent on the sequence and intramolecular location of distinct amino acid motifs. We used the two-hybrid interaction trap to identify proteins that can associate with the PDZ motif-rich segment in the protein tyrosine phosphatase PTP-BL. A specific interaction was found with the Lin-11, Isl-1, Mec-3 (LIM) domain containing protein RIL. More detailed analysis demonstrated that the binding specificity resides in the second and fourth PDZ motif of PTP-BL and the LIM domain in RIL. Immunohistochemistry on various mouse tissues revealed a submembranous colocalization of PTP-BL and RIL in epithelial cells. Remarkably, there is also an N-terminal PDZ motif in RIL itself that can bind to the RIL-LIM domain. We demonstrate here that the RIL-LIM domain can be phosphorylated on tyrosine in vitro and in vivo and can be dephosphorylated in vitro by the PTPase domain of PTP-BL. Our data point to the presence of a double PDZ-binding interface on the RIL-LIM domain and suggest tyrosine phosphorylation as a regulatory mechanism for LIM-PDZ associations in the assembly of multiprotein complexes. These findings are in line with an important role of PDZ-mediated interactions in the shaping and organization of submembranous microenvironments of polarized cells.
Resumo:
The molecular mechanism of hepatic cell growth and differentiation is ill defined. In the present study, we examined the putative role of tyrosine phosphorylation in normal rat liver development and in an in vitro model, the α-fetoprotein-producing (AFP+) and AFP-nonproducing (AFP−) clones of the McA-RH 7777 rat hepatoma. We demonstrated in vivo and in vitro that the AFP+ phenotype is clearly associated with enhanced tyrosine phosphorylation, as assessed by immunoblotting and flow cytometry. Moreover, immunoprecipitation of proteins with anti-phosphotyrosine antibody showed that normal fetal hepatocytes expressed the same phosphorylation pattern as stable AFP+ clones and likewise for adult hepatocytes and AFP− clones. The tyrosine phosphorylation of several proteins, including the β-subunit of the insulin receptor, insulin receptor substrate-1, p85 regulatory subunit of phosphatidylinositol-3-kinase, and ras-guanosine triphosphatase-activating protein, was observed in AFP+ clones, whereas the same proteins were not phosphorylated in AFP− clones. We also observed that fetal hepatocytes and the AFP+ clones express 4 times more of the insulin receptor β-subunit compared with adult hepatocytes and AFP− clones and, accordingly, that these AFP+ clones were more responsive to exogenous insulin in terms of protein tyrosine phosphorylation. Finally, growth rate in cells of AFP+ clones was higher than that measured in cells of AFP− clones, and inhibition of phosphatidylinositol-3-kinase by LY294002 and Wortmannin blocked insulin- and serum-stimulated DNA synthesis only in cells of AFP+ clones. These studies provide evidences in support of the hypothesis that signaling via insulin prevents hepatocyte differentiation by promoting fetal hepatocyte growth.
Resumo:
Thrombospondin-1 (TSP) induces endothelial cell (EC) actin reorganization and focal adhesion disassembly and influences multiple EC functions. To determine whether TSP might regulate EC–EC interactions, we studied the effect of exogenous TSP on the movement of albumin across postconfluent EC monolayers. TSP increased transendothelial albumin flux in a dose-dependent manner at concentrations ≥1 μg/ml (2.2 nM). Increases in albumin flux were observed as early as 1 h after exposure to 30 μg/ml (71 nM) TSP. Inhibition of tyrosine kinases with herbimycin A or genistein protected against the TSP-induced barrier dysfunction by >80% and >50%, respectively. TSP-exposed monolayers exhibited actin reorganization and intercellular gap formation, whereas pretreatment with herbimycin A protected against this effect. Increased staining of phosphotyrosine-containing proteins was observed in plaque-like structures and at the intercellular boundaries of TSP-treated cells. In the presence of protein tyrosine phosphatase inhibition, TSP induced dose- and time-dependent increments in levels of phosphotyrosine-containing proteins; these TSP dose and time requirements were compatible with those defined for EC barrier dysfunction. Phosphoproteins that were identified include the adherens junction proteins focal adhesion kinase, paxillin, γ-catenin, and p120Cas. These combined data indicate that TSP can modulate endothelial barrier function, in part, through tyrosine phosphorylation of EC proteins.
Resumo:
Eukaryotic cells actively block entry into mitosis in the presence of DNA damage or incompletely replicated DNA. This response is mediated by signal transduction cascades called cell cycle checkpoints. We show here that the human checkpoint control protein hRAD9 physically associates with two other checkpoint control proteins, hRAD1 and hHUS1. Furthermore, hRAD1 and hHUS1 themselves interact, analogously to their fission yeast homologues Rad1 and Hus1. We also show that hRAD9 is present in multiple phosphorylation forms in vivo. These phosphorylated forms are present in tissue culture cells that have not been exposed to exogenous sources of DNA damage, but it remains possible that endogenous damage or naturally occurring replication intermediates cause the observed phosphorylation. Finally, we show that hRAD9 is a nuclear protein, indicating that in this signal transduction pathway, hRAD9 is physically proximal to the upstream (DNA damage) signal rather than to the downstream, cytoplasmic, cell cycle machinery.
Resumo:
The intermediate filament protein vimentin is a major phosphoprotein in mammalian fibroblasts, and reversible phosphorylation plays a key role in its dynamic rearrangement. Selective inhibition of type 2A but not type 1 protein phosphatases led to hyperphosphorylation and concomitant disassembly of vimentin, characterized by a collapse into bundles around the nucleus. We have analyzed the potential role of one of the major protein phosphatase 2A (PP2A) regulatory subunits, B55, in vimentin dephosphorylation. In mammalian fibroblasts, B55 protein was distributed ubiquitously throughout the cytoplasm with a fraction associated to vimentin. Specific depletion of B55 in living cells by antisense B55 RNA was accompanied by disassembly and increased phosphorylation of vimentin, as when type 2A phosphatases were inhibited using okadaic acid. The presence of B55 was a prerequisite for PP2A to efficiently dephosphorylate vimentin in vitro or to induce filament reassembly in situ. Both biochemical fractionation and immunofluorescence analysis of detergent-extracted cells revealed that fractions of PP2Ac, PR65, and B55 were tightly associated with vimentin. Furthermore, vimentin-associated PP2A catalytic subunit was displaced in B55-depleted cells. Taken together these data show that, in mammalian fibroblasts, the intermediate filament protein vimentin is dephosphorylated by PP2A, an event targeted by B55.
Resumo:
The polymeric Ig receptor (pIgR) transcytoses its ligand, dimeric IgA (dIgA), from the basolateral to the apical surface of epithelial cells. Although the pIgR is constitutively transcytosed in the absence of ligand, binding of dIgA stimulates transcytosis of the pIgR. We recently reported that dIgA binding to the pIgR induces translocation of protein kinase C, production of inositol triphosphate, and elevation of intracellular free calcium. We now report that dIgA binding causes rapid, transient tyrosine phosphorylation of several proteins, including phosphatidyl inositol-specific phospholipase C-γl. Protein tyrosine kinase inhibitors or deletion of the last 30 amino acids of pIgR cytoplasmic tail prevents IgA-stimulated protein tyrosine kinase activation, tyrosine phosphorylation of phospholipase C-γl, production of inositol triphosphate, and the stimulation of transcytosis by dIgA. Analysis of pIgR deletion mutants reveals that the same discrete portion of the cytoplasmic domain, residues 727–736 (but not the Tyr734), controls both the ability of pIgR to cause dIgA-induced tyrosine phosphorylation of the phospholipase C-γl and to undergo dIgA-stimulated transcytosis. In addition, dIgA transcytosis can be strongly stimulated by mimicking phospholipase C-γl activation. In combination with our previous results, we conclude that the protein tyrosine kinase(s) and phospholipase C-γl that are activated upon dIgA binding to the pIgR control dIgA-stimulated pIgR transcytosis.
Resumo:
We have previously shown that the LIM domains of paxillin operate as the focal adhesion (FA)-targeting motif of this protein. In the current study, we have identified the capacity of paxillin LIM2 and LIM3 to serve as binding sites for, and substrates of serine/threonine kinases. The activities of the LIM2- and LIM3-associated kinases were stimulated after adhesion of CHO.K1 cells to fibronectin; consequently, a role for LIM domain phosphorylation in regulating the subcellular localization of paxillin after adhesion to fibronectin was investigated. An avian paxillin-CHO.K1 model system was used to explore the role of paxillin phosphorylation in paxillin localization to FAs. We found that mutations of paxillin that mimicked LIM domain phosphorylation accelerated fibronectin-induced localization of paxillin to focal contacts. Further, blocking phosphorylation of the LIM domains reduced cell adhesion to fibronectin, whereas constitutive LIM domain phosphorylation significantly increased the capacity of cells to adhere to fibronectin. The potentiation of FA targeting and cell adhesion to fibronectin was specific to LIM domain phosphorylation as mutation of the amino-terminal tyrosine and serine residues of paxillin that are phosphorylated in response to fibronectin adhesion had no effect on the rate of FA localization or cell adhesion. This represents the first demonstration of the regulation of protein localization through LIM domain phosphorylation and suggests a novel mechanism of regulating LIM domain function. Additionally, these results provide the first evidence that paxillin contributes to “inside-out” integrin-mediated signal transduction.
Resumo:
Exposure of A431 squamous and MDA-MB-231 mammary carcinoma cells to ionizing radiation has been associated with short transient increases in epidermal growth factor receptor (EGFR) tyrosine phosphorylation and activation of the mitogen-activated protein kinase (MAPK) and c-Jun NH2-terminal kinase (JNK) pathways. Irradiation (2 Gy) of A431 and MDA-MB-231 cells caused immediate primary activations (0–10 min) of the EGFR and the MAPK and JNK pathways, which were surprisingly followed by later prolonged secondary activations (90–240 min). Primary and secondary activation of the EGFR was abolished by molecular inhibition of EGFR function. The primary and secondary activation of the MAPK pathway was abolished by molecular inhibition of either EGFR or Ras function. In contrast, molecular inhibition of EGFR function abolished the secondary but not the primary activation of the JNK pathway. Inhibition of tumor necrosis factor α receptor function by use of neutralizing monoclonal antibodies blunted primary activation of the JNK pathway. Addition of a neutralizing monoclonal antibody versus transforming growth factor α (TGFα) had no effect on the primary activation of either the EGFR or the MAPK and JNK pathways after irradiation but abolished the secondary activation of EGFR, MAPK, and JNK. Irradiation of cells increased pro-TGFα cleavage 120–180 min after exposure. In agreement with radiation-induced release of a soluble factor, activation of the EGFR and the MAPK and JNK pathways could be induced in nonirradiated cells by the transfer of media from irradiated cells 120 min after irradiation. The ability of the transferred media to cause MAPK and JNK activation was blocked when media were incubated with a neutralizing antibody to TGFα. Thus radiation causes primary and secondary activation of the EGFR and the MAPK and JNK pathways in autocrine-regulated carcinoma cells. Secondary activation of the EGFR and the MAPK and JNK pathways is dependent on radiation-induced cleavage and autocrine action of TGFα. Neutralization of TGFα function by an anti-TGFα antibody or inhibition of MAPK function by MEK1/2 inhibitors (PD98059 and U0126) radiosensitized A431 and MDA-MB-231 cells after irradiation in apoptosis, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT), and clonogenic assays. These data demonstrate that disruption of the TGFα–EGFR–MAPK signaling module represents a strategy to decrease carcinoma cell growth and survival after irradiation.