883 resultados para Project 2002-024-B : Team Collaboration in High Bandwidth Virtual Environments


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lo studio della turbolenza è di fondamentale importanza non solo per la fluidodinamica teorica ma anche perchè viene riscontrata in una moltitudine di problemi di interesse ingegneristico. All'aumentare del numero di Reynolds, le scale caratteristiche tendono a ridurre le loro dimensioni assolute. Nella fluidodinamica sperimentale già da lungo tempo si è affermata l'anemometria a filo caldo, grazie ad ottime caratteristiche di risoluzione spaziale e temporale. Questa tecnica, caratterizzata da un basso costo e da una relativa semplicità, rende possibile la realizzazione di sensori di tipo artigianale, che hanno il vantaggio di poter essere relizzati in dimensioni inferiori. Nonostante l'ottima risoluzione spaziale degli hot-wire, infatti, si può verificare, ad alto numero di Reynolds, che le dimensioni dell'elemento sensibile siano superiori a quelle delle piccole scale. Questo impedisce al sensore di risolvere correttamente le strutture più piccole. Per questa tesi di laurea è stato allestito un laboratorio per la costruzione di sensori a filo caldo con filo di platino. Sono in questo modo stati realizzati diversi sensori dalle dimensioni caratteristiche inferiori a quelle dei sensori disponibili commercialmente. I sensori ottenuti sono quindi stati testati in un getto turbolento, dapprima confrontandone la risposta con un sensore di tipo commerciale, per verificarne il corretto funzionamento. In seguito si sono eseguite misure più specifiche e limitate ad alcune particolari zone all'interno del campo di moto, dove è probabile riscontrare effetti di risoluzione spaziale. Sono stati analizzati gli effetti della dimensione fisica del sensore sui momenti statistici centrali, sugli spettri di velocità e sulle funzioni di densità di probabilità.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several biomarkers had been proposed as useful parameters to better define the prognosis or to delineate new target therapy strategies for glioblastoma (GBM) patients. MicroRNAs could represent interesting molecules, for their role in tumorigenesis and cancer progression and for their specific tissue expression. Although many studies have tried to identify a specific microRNAs signature for glioblastoma, by now an exhaustive GBM microRNAs profile is far to be well defined. In this work we set up a real-time qPCR, based on LNA primers, to investigate the expression of 19 microRNAs in brain tumors, focusing our attention on GBMs. MiRNAs expression in 30 GBM paired FFPE-Fresh/Frozen samples was firstly analyzed. The good correlation obtained comparing miRNAs results confirmed the feasibility of performing miRNAs analysis starting from FFPE tissues. This leads to many advantages, as a good disposal of archival tumor and normal brain specimens and the possibility to verify the percentage of tumor cells in the analyzed sample. In the second part we compared 3 non-neoplastic brain references to use as control in miRNAs analysis. Normal adjacent the tumor, epileptic specimens and a commercial total RNA were analyzed for miRNAs expression and results showed that different non-neoplastic controls could lead to important discrepancies in GBM miRNAs profiles. Analyzing 50 FFPE GBMs using all 3 non-neoplastic references, we defined a putative GBM miRNAs signature: mir-10b, miR-21 and miR-27a resulted upregulated, while miR-7, miR-9, miR-26a, miR-31, miR-101, miR-137, miR-222 and miR-330 were downregulated. Comparing miRNAs expression among GBM group and gliomas of grade I, II and III, we obtained 3 miRNAs (miR-10b, mir-34a and miR-101) showing a different regulation status between high grade and low grade gliomas. Intriguingly, miR-10b was upregulated in high grade and significantly downregulated in low grade gliomas, suggesting that could be a candidate for a GBM target therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of High-Integrity Real-Time Systems has a high footprint in terms of human, material and schedule costs. Factoring functional, reusable logic in the application favors incremental development and contains costs. Yet, achieving incrementality in the timing behavior is a much harder problem. Complex features at all levels of the execution stack, aimed to boost average-case performance, exhibit timing behavior highly dependent on execution history, which wrecks time composability and incrementaility with it. Our goal here is to restitute time composability to the execution stack, working bottom up across it. We first characterize time composability without making assumptions on the system architecture or the software deployment to it. Later, we focus on the role played by the real-time operating system in our pursuit. Initially we consider single-core processors and, becoming less permissive on the admissible hardware features, we devise solutions that restore a convincing degree of time composability. To show what can be done for real, we developed TiCOS, an ARINC-compliant kernel, and re-designed ORK+, a kernel for Ada Ravenscar runtimes. In that work, we added support for limited-preemption to ORK+, an absolute premiere in the landscape of real-word kernels. Our implementation allows resource sharing to co-exist with limited-preemptive scheduling, which extends state of the art. We then turn our attention to multicore architectures, first considering partitioned systems, for which we achieve results close to those obtained for single-core processors. Subsequently, we shy away from the over-provision of those systems and consider less restrictive uses of homogeneous multiprocessors, where the scheduling algorithm is key to high schedulable utilization. To that end we single out RUN, a promising baseline, and extend it to SPRINT, which supports sporadic task sets, hence matches real-world industrial needs better. To corroborate our results we present findings from real-world case studies from avionic industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis work we will explore and discuss the properties of the gamma-ray sources included in the first Fermi-LAT catalog of sources above 10 GeV (1FHL), by considering both blazars and the non negligible fraction of still unassociated gamma-ray sources (UGS, 13%). We perform a statistical analysis of a complete sample of hard gamma-ray sources, included in the 1FHL catalog, mostly composed of HSP blazars, and we present new VLBI observations of the faintest members of the sample. The new VLBI data, complemented by an extensive search of the archives for brighter sources, are essential to gather a sample as large as possible for the assessment of the significance of the correlation between radio and very high energy (E>100 GeV) emission bands. After the characterization of the statistical properties of HSP blazars and UGS, we use a complementary approach, by focusing on an intensive multi-frequency observing VLBI and gamma-ray campaign carried out for one of the most remarkable and closest HSP blazar Markarian 421.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Feedback from the most massive components of a young stellar cluster deeply affects the surrounding ISM driving an expanding over-pressured hot gas cavity in it. In spiral galaxies these structures may have sufficient energy to break the disk and eject large amount of material into the halo. The cycling of this gas, which eventually will fall back onto the disk, is known as galactic fountains. We aim at better understanding the dynamics of such fountain flow in a Galactic context, frame the problem in a more dynamic environment possibly learning about its connection and regulation to the local driving mechanism and understand its role as a metal diffusion channel. The interaction of the fountain with a hot corona is hereby analyzed, trying to understand the properties and evolution of the extraplanar material. We perform high resolution hydrodynamical simulations with the moving-mesh code AREPO to model the multi-phase ISM of a Milky Way type galaxy. A non-equilibrium chemical network is included to self consistently follow the evolution of the main coolants of the ISM. Spiral arm perturbations in the potential are considered so that large molecular gas structures are able to dynamically form here, self shielded from the interstellar radiation field. We model the effect of SN feedback from a new-born stellar cluster inside such a giant molecular cloud, as the driving force of the fountain. Passive Lagrangian tracer particles are used in conjunction to the SN energy deposition to model and study diffusion of freshly synthesized metals. We find that both interactions with hot coronal gas and local ISM properties and motions are equally important in shaping the fountain. We notice a bimodal morphology where most of the ejected gas is in a cold $10^4$ K clumpy state while the majority of the affected volume is occupied by a hot diffuse medium. While only about 20\% of the produced metals stay local, most of them quickly diffuse through this hot regime to great scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Many medical exams use 5 options for multiple choice questions (MCQs), although the literature suggests that 3 options are optimal. Previous studies on this topic have often been based on non-medical examinations, so we sought to analyse rarely selected, 'non-functional' distractors (NF-D) in high stakes medical examinations, and their detection by item authors as well as psychometric changes resulting from a reduction in the number of options. Methods Based on Swiss Federal MCQ examinations from 2005-2007, the frequency of NF-D (selected by <1% or <5% of the candidates) was calculated. Distractors that were chosen the least or second least were identified and candidates who chose them were allocated to the remaining options using two extreme assumptions about their hypothetical behaviour: In case rarely selected distractors were eliminated, candidates could randomly choose another option - or purposively choose the correct answer, from which they had originally been distracted. In a second step, 37 experts were asked to mark the least plausible options. The consequences of a reduction from 4 to 3 or 2 distractors - based on item statistics or on the experts' ratings - with respect to difficulty, discrimination and reliability were modelled. Results About 70% of the 5-option-items had at least 1 NF-D selected by <1% of the candidates (97% for NF-Ds selected by <5%). Only a reduction to 2 distractors and assuming that candidates would switch to the correct answer in the absence of a 'non-functional' distractor led to relevant differences in reliability and difficulty (and to a lesser degree discrimination). The experts' ratings resulted in slightly greater changes compared to the statistical approach. Conclusions Based on item statistics and/or an expert panel's recommendation, the choice of a varying number of 3-4 (or partly 2) plausible distractors could be performed without marked deteriorations in psychometric characteristics.