985 resultados para Process machine


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Business Intelligence (BI) can be seen as a method that gathers information and data from information systems in order to help companies to be more accurate in their decision-making process. Traditionally BI systems were associated with the use of Data Warehouses (DW). The prime purpose of DW is to serve as a repository that stores all the relevant information required for making the correct decision. The necessity to integrate streaming data became crucial with the need to improve the efficiency and effectiveness of the decision process. In primary and secondary education, there is a lack of BI solutions. Due to the schools reality the main purpose of this study is to provide a Pervasive BI solution able to monitoring the schools and student data anywhere and anytime in real-time as well as disseminating the information through ubiquitous devices. The first task consisted in gathering data regarding the different choices made by the student since his enrolment in a certain school year until the end of it. Thereafter a dimensional model was developed in order to be possible building a BI platform. This paper presents the dimensional model, a set of pre-defined indicators, the Pervasive Business Intelligence characteristics and the prototype designed. The main contribution of this study was to offer to the schools a tool that could help them to make accurate decisions in real-time. Data dissemination was achieved through a localized application that can be accessed anywhere and anytime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Children are an especially vulnerable population, particularly in respect to drug administration. It is estimated that neonatal and pediatric patients are at least three times more vulnerable to damage due to adverse events and medication errors than adults are. With the development of this framework, it is intended the provision of a Clinical Decision Support System based on a prototype already tested in a real environment. The framework will include features such as preparation of Total Parenteral Nutrition prescriptions, table pediatric and neonatal emergency drugs, medical scales of morbidity and mortality, anthropometry percentiles (weight, length/height, head circumference and BMI), utilities for supporting medical decision on the treatment of neonatal jaundice and anemia and support for technical procedures and other calculators and widespread use tools. The solution in development means an extension of INTCare project. The main goal is to provide an approach to get the functionality at all times of clinical practice and outside the hospital environment for dissemination, education and simulation of hypothetical situations. The aim is also to develop an area for the study and analysis of information and extraction of knowledge from the data collected by the use of the system. This paper presents the architecture, their requirements and functionalities and a SWOT analysis of the solution proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The occurrence of Barotrauma is identified as a major concern for health professionals, since it can be fatal for patients. In order to support the decision process and to predict the risk of occurring barotrauma Data Mining models were induced. Based on this principle, the present study addresses the Data Mining process aiming to provide hourly probability of a patient has Barotrauma. The process of discovering implicit knowledge in data collected from Intensive Care Units patientswas achieved through the standard process Cross Industry Standard Process for Data Mining. With the goal of making predictions according to the classification approach they several DM techniques were selected: Decision Trees, Naive Bayes and Support Vector Machine. The study was focused on identifying the validity and viability to predict a composite variable. To predict the Barotrauma two classes were created: “risk” and “no risk”. Such target come from combining two variables: Plateau Pressure and PCO2. The best models presented a sensitivity between 96.19% and 100%. In terms of accuracy the values varied between 87.5% and 100%. This study and the achieved results demonstrated the feasibility of predicting the risk of a patient having Barotrauma by presenting the probability associated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermoplastic matrix composites are receiving increasing interest in last years. This is due to several advantageous properties and speed of processing of these materials as compared to their thermoset counterparts. Among thermoplastic composites, Long Fibre Thermoplastics (LFTs) have seen the fastest growth, mainly due to developments in the automotive sector. LFTs combine the (semi-)structural material properties of long (>1 cm) fibres, with the ease and speed of thermoplastic processing. This paper reports a study of a novel low-cost LFT technology and resulting composites. A patented powder-coating machine able to produce continuously pre-impregnated materials directly from fibre rovings and polymer powders was used to process glass-fibre reinforced polypropylene (GF/PP) towpregs. Such pre-impregnated materials were then chopped and used to make LFTs in a patented low-cost piston-blender developed by the Centre of Lightweight Structures, TUD-TNO, the Netherlands. The work allowed studying the most relevant towpreg production parameters and establishing the processing window needed to obtain a good quality GF/PP powder coated material. Finally, the processing window that allows producing LFTs of good quality in the piston-blender and the mechanical properties of final stamped GF/PP composite parts were also determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento - Leaders for Technical Industries (LTI) - MIT Portugal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The MAP-i Doctoral Program of the Universities of Minho, Aveiro and Porto

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Propolis is a chemically complex biomass produced by honeybees (Apis mellifera) from plant resins added of salivary enzymes, beeswax, and pollen. The biological activities described for propolis were also identified for donor plants resin, but a big challenge for the standardization of the chemical composition and biological effects of propolis remains on a better understanding of the influence of seasonality on the chemical constituents of that raw material. Since propolis quality depends, among other variables, on the local flora which is strongly influenced by (a)biotic factors over the seasons, to unravel the harvest season effect on the propolis chemical profile is an issue of recognized importance. For that, fast, cheap, and robust analytical techniques seem to be the best choice for large scale quality control processes in the most demanding markets, e.g., human health applications. For that, UV-Visible (UV-Vis) scanning spectrophotometry of hydroalcoholic extracts (HE) of seventy-three propolis samples, collected over the seasons in 2014 (summer, spring, autumn, and winter) and 2015 (summer and autumn) in Southern Brazil was adopted. Further machine learning and chemometrics techniques were applied to the UV-Vis dataset aiming to gain insights as to the seasonality effect on the claimed chemical heterogeneity of propolis samples determined by changes in the flora of the geographic region under study. Descriptive and classification models were built following a chemometric approach, i.e. principal component analysis (PCA) and hierarchical clustering analysis (HCA) supported by scripts written in the R language. The UV-Vis profiles associated with chemometric analysis allowed identifying a typical pattern in propolis samples collected in the summer. Importantly, the discrimination based on PCA could be improved by using the dataset of the fingerprint region of phenolic compounds ( = 280-400m), suggesting that besides the biological activities of those secondary metabolites, they also play a relevant role for the discrimination and classification of that complex matrix through bioinformatics tools. Finally, a series of machine learning approaches, e.g., partial least square-discriminant analysis (PLS-DA), k-Nearest Neighbors (kNN), and Decision Trees showed to be complementary to PCA and HCA, allowing to obtain relevant information as to the sample discrimination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When representing the requirements for an intended software solution during the development process, a logical architecture is a model that provides an organized vision of how functionalities behave regardless of the technologies to be implemented. If the logical architecture represents an ambient assisted living (AAL) ecosystem, such representation is a complex task due to the existence of interrelated multidomains, which, most of the time, results in incomplete and incoherent user requirements. In this chap- ter, we present the results obtained when applying process-level modeling techniques to the derivation of the logical architecture for a real industrial AAL project. We adopt a V-Model–based approach that expresses the AAL requirements in a process-level perspec- tive, instead of the traditional product-level view. Additionally, we ensure compliance of the derived logical architecture with the National Institute of Standards and Technology (NIST) reference architecture as nonfunctional requirements to support the implementa- tion of the AAL architecture in cloud contexts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated different cooking processes (roasted, cooked and fried) on total mercury (Hg) content in fish species most consumed by Manaus residents and surrounding communities, Amazon region. The results obtained for total Hg in natura and after the three types of preparation (roasted, cooked and fried) for 12 fish species showed a significant Hg concentration variation. In the present study the cooked and frying processes resulted in higher Hg losses for Pacu, Pescada, Jaraqui, Curimatã, Surubin and Aruanã fish species, most of them presenting detritivorous and carnivorous feeding habits. The higher Hg losses in the roasting process occurred for Sardinha, Aracu, Tucunaré, Pirapitinga, Branquinha and Tambaqui fish species, most of them being omnivorous and herbivorous fish species. Some micronutrients (Ca, Fe, K, Na, Se and Zn) in fish species in natura were also determined in order to perform a nutritional evaluation regarding these micronutrients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main features of most components consist of simple basic functional geometries: planes, cylinders, spheres and cones. Shape and position recognition of these geometries is essential for dimensional characterization of components, and represent an important contribution in the life cycle of the product, concerning in particular the manufacturing and inspection processes of the final product. This work aims to establish an algorithm to automatically recognize such geometries, without operator intervention. Using differential geometry large volumes of data can be treated and the basic functional geometries to be dealt recognized. The original data can be obtained by rapid acquisition methods, such as 3D survey or photography, and then converted into Cartesian coordinates. The satisfaction of intrinsic decision conditions allows different geometries to be fast identified, without operator intervention. Since inspection is generally a time consuming task, this method reduces operator intervention in the process. The algorithm was first tested using geometric data generated in MATLAB and then through a set of data points acquired by measuring with a coordinate measuring machine and a 3D scan on real physical surfaces. Comparison time spent in measuring is presented to show the advantage of the method. The results validated the suitability and potential of the algorithm hereby proposed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado em Engenharia Industrial

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Mechanical Engineering

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Mecânica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Eletrónica Médica)