901 resultados para Probabilistic cellular automata
Resumo:
Several methods are examined which allow to produce forecasts for time series in the form of probability assignments. The necessary concepts are presented, addressing questions such as how to assess the performance of a probabilistic forecast. A particular class of models, cluster weighted models (CWMs), is given particular attention. CWMs, originally proposed for deterministic forecasts, can be employed for probabilistic forecasting with little modification. Two examples are presented. The first involves estimating the state of (numerically simulated) dynamical systems from noise corrupted measurements, a problem also known as filtering. There is an optimal solution to this problem, called the optimal filter, to which the considered time series models are compared. (The optimal filter requires the dynamical equations to be known.) In the second example, we aim at forecasting the chaotic oscillations of an experimental bronze spring system. Both examples demonstrate that the considered time series models, and especially the CWMs, provide useful probabilistic information about the underlying dynamical relations. In particular, they provide more than just an approximation to the conditional mean.
Resumo:
This volume is a serious attempt to open up the subject of European philosophy of science to real thought, and provide the structural basis for the interdisciplinary development of its specialist fields, but also to provoke reflection on the idea of ‘European philosophy of science’. This efforts should foster a contemporaneous reflection on what might be meant by philosophy of science in Europe and European philosophy of science, and how in fact awareness of it could assist philosophers interpret and motivate their research through a stronger collective identity. The overarching aim is to set the background for a collaborative project organising, systematising, and ultimately forging an identity for, European philosophy of science by creating research structures and developing research networks across Europe to promote its development.
Resumo:
The probabilistic projections of climate change for the United Kingdom (UK Climate Impacts Programme) show a trend towards hotter and drier summers. This suggests an expected increase in cooling demand for buildings – a conflicting requirement to reducing building energy needs and related CO2 emissions. Though passive design is used to reduce thermal loads of a building, a supplementary cooling system is often necessary. For such mixed-mode strategies, indirect evaporative cooling is investigated as a low energy option in the context of a warmer and drier UK climate. Analysis of the climate projections shows an increase in wet-bulb depression; providing a good indication of the cooling potential of an evaporative cooler. Modelling a mixed-mode building at two different locations, showed such a building was capable of maintaining adequate thermal comfort in future probable climates. Comparing the control climate to the scenario climate, an increase in the median of evaporative cooling load is evident. The shift is greater for London than for Glasgow with a respective 71.6% and 3.3% increase in the median annual cooling load. The study shows evaporative cooling should continue to function as an effective low-energy cooling technique in future, warming climates.
Resumo:
The Chartered Institute of Building Service Engineers (CIBSE) produced a technical memorandum (TM36) presenting research on future climate impacting building energy use and thermal comfort. One climate projection for each of four CO2 emissions scenario were used in TM36, so providing a deterministic outlook. As part of the UK Climate Impacts Programme (UKCIP) probabilistic climate projections are being studied in relation to building energy simulation techniques. Including uncertainty in climate projections is considered an important advance to climate impacts modelling and is included in the latest UKCIP data (UKCP09). Incorporating the stochastic nature of these new climate projections in building energy modelling requires a significant increase in data handling and careful statistical interpretation of the results to provide meaningful conclusions. This paper compares the results from building energy simulations when applying deterministic and probabilistic climate data. This is based on two case study buildings: (i) a mixed-mode office building with exposed thermal mass and (ii) a mechanically ventilated, light-weight office building. Building (i) represents an energy efficient building design that provides passive and active measures to maintain thermal comfort. Building (ii) relies entirely on mechanical means for heating and cooling, with its light-weight construction raising concern over increased cooling loads in a warmer climate. Devising an effective probabilistic approach highlighted greater uncertainty in predicting building performance, depending on the type of building modelled and the performance factors under consideration. Results indicate that the range of calculated quantities depends not only on the building type but is strongly dependent on the performance parameters that are of interest. Uncertainty is likely to be particularly marked with regard to thermal comfort in naturally ventilated buildings.
Resumo:
Our new molecular understanding of immune priming states that dendritic cell activation is absolutely pivotal for expansion and differentiation of naïve T lymphocytes, and it follows that understanding DC activation is essential to understand and design vaccine adjuvants. This chapter describes how dendritic cells can be used as a core tool to provide detailed quantitative and predictive immunomics information about how adjuvants function. The role of distinct antigen, costimulation, and differentiation signals from activated DC in priming is explained. Four categories of input signals which control DC activation – direct pathogen detection, sensing of injury or cell death, indirect activation via endogenous proinflammatory mediators, and feedback from activated T cells – are compared and contrasted. Practical methods for studying adjuvants using DC are summarised and the importance of DC subset choice, simulating T cell feedback, and use of knockout cells is highlighted. Finally, five case studies are examined that illustrate the benefit of DC activation analysis for understanding vaccine adjuvant function.
Resumo:
Abstract: Long-term exposure of skylarks to a fictitious insecticide and of wood mice to a fictitious fungicide were modelled probabilistically in a Monte Carlo simulation. Within the same simulation the consequences of exposure to pesticides on reproductive success were modelled using the toxicity-exposure-linking rules developed by R.S. Bennet et al. (2005) and the interspecies extrapolation factors suggested by R. Luttik et al.(2005). We built models to reflect a range of scenarios and as a result were able to show how exposure to pesticide might alter the number of individuals engaged in any given phase of the breeding cycle at any given time and predict the numbers of new adults at the season’s end.
Resumo:
There are several scoring rules that one can choose from in order to score probabilistic forecasting models or estimate model parameters. Whilst it is generally agreed that proper scoring rules are preferable, there is no clear criterion for preferring one proper scoring rule above another. This manuscript compares and contrasts some commonly used proper scoring rules and provides guidance on scoring rule selection. In particular, it is shown that the logarithmic scoring rule prefers erring with more uncertainty, the spherical scoring rule prefers erring with lower uncertainty, whereas the other scoring rules are indifferent to either option.
Resumo:
Three wind gust estimation (WGE) methods implemented in the numerical weather prediction (NWP) model COSMO-CLM are evaluated with respect to their forecast quality using skill scores. Two methods estimate gusts locally from mean wind speed and the turbulence state of the atmosphere, while the third one considers the mixing-down of high momentum within the planetary boundary layer (WGE Brasseur). One hundred and fifty-eight windstorms from the last four decades are simulated and results are compared with gust observations at 37 stations in Germany. Skill scores reveal that the local WGE methods show an overall better behaviour, whilst WGE Brasseur performs less well except for mountain regions. The here introduced WGE turbulent kinetic energy (TKE) permits a probabilistic interpretation using statistical characteristics of gusts at observational sites for an assessment of uncertainty. The WGE TKE formulation has the advantage of a ‘native’ interpretation of wind gusts as result of local appearance of TKE. The inclusion of a probabilistic WGE TKE approach in NWP models has, thus, several advantages over other methods, as it has the potential for an estimation of uncertainties of gusts at observational sites.
Resumo:
We propose and demonstrate a fully probabilistic (Bayesian) approach to the detection of cloudy pixels in thermal infrared (TIR) imagery observed from satellite over oceans. Using this approach, we show how to exploit the prior information and the fast forward modelling capability that are typically available in the operational context to obtain improved cloud detection. The probability of clear sky for each pixel is estimated by applying Bayes' theorem, and we describe how to apply Bayes' theorem to this problem in general terms. Joint probability density functions (PDFs) of the observations in the TIR channels are needed; the PDFs for clear conditions are calculable from forward modelling and those for cloudy conditions have been obtained empirically. Using analysis fields from numerical weather prediction as prior information, we apply the approach to imagery representative of imagers on polar-orbiting platforms. In comparison with the established cloud-screening scheme, the new technique decreases both the rate of failure to detect cloud contamination and the false-alarm rate by one quarter. The rate of occurrence of cloud-screening-related errors of >1 K in area-averaged SSTs is reduced by 83%. Copyright © 2005 Royal Meteorological Society.
Resumo:
The aim of this article is to improve the communication of the probabilistic flood forecasts generated by hydrological ensemble prediction systems (HEPS) by understanding perceptions of different methods of visualizing probabilistic forecast information. This study focuses on interexpert communication and accounts for differences in visualization requirements based on the information content necessary for individual users. The perceptions of the expert group addressed in this study are important because they are the designers and primary users of existing HEPS. Nevertheless, they have sometimes resisted the release of uncertainty information to the general public because of doubts about whether it can be successfully communicated in ways that would be readily understood to nonexperts. In this article, we explore the strengths and weaknesses of existing HEPS visualization methods and thereby formulate some wider recommendations about the best practice for HEPS visualization and communication. We suggest that specific training on probabilistic forecasting would foster use of probabilistic forecasts with a wider range of applications. The result of a case study exercise showed that there is no overarching agreement between experts on how to display probabilistic forecasts and what they consider the essential information that should accompany plots and diagrams. In this article, we propose a list of minimum properties that, if consistently displayed with probabilistic forecasts, would make the products more easily understandable. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
Huntingtin (Htt) protein interacts with many transcriptional regulators, with widespread disruption to the transcriptome in Huntington's disease (HD) brought about by altered interactions with the mutant Htt (muHtt) protein. Repressor Element-1 Silencing Transcription Factor (REST) is a repressor whose association with Htt in the cytoplasm is disrupted in HD, leading to increased nuclear REST and concomitant repression of several neuronal-specific genes, including brain-derived neurotrophic factor (Bdnf). Here, we explored a wide set of HD dysregulated genes to identify direct REST targets whose expression is altered in a cellular model of HD but that can be rescued by knock-down of REST activity. We found many direct REST target genes encoding proteins important for nervous system development, including a cohort involved in synaptic transmission, at least two of which can be rescued at the protein level by REST knock-down. We also identified several microRNAs (miRNAs) whose aberrant repression is directly mediated by REST, including miR-137, which has not previously been shown to be a direct REST target in mouse. These data provide evidence of the contribution of inappropriate REST-mediated transcriptional repression to the widespread changes in coding and non-coding gene expression in a cellular model of HD that may affect normal neuronal function and survival.
Resumo:
Transcriptional dysfunction is a prominent hallmark of Huntington's disease (HD). Several transcription factors have been implicated in the aetiology of HD progression and one of the most prominent is repressor element 1 (RE1) silencing transcription factor (REST). REST is a global repressor of neuronal gene expression and in the presence of mutant Huntingtin increased nuclear REST levels lead to elevated RE1 occupancy and a concomitant increase in target gene repression, including brain-derived neurotrophic factor. It is of great interest to devise strategies to reverse transcriptional dysregulation caused by increased nuclear REST and determine the consequences in HD. Thus far, such strategies have involved RNAi or mutant REST constructs. Decoys are double-stranded oligodeoxynucleotides corresponding to the DNA-binding element of a transcription factor and act to sequester it, thereby abrogating its transcriptional activity. Here, we report the use of a novel decoy strategy to rescue REST target gene expression in a cellular model of HD. We show that delivery of the decoy in cells expressing mutant Huntingtin leads to its specific interaction with REST, a reduction in REST occupancy of RE1s and rescue of target gene expression, including Bdnf. These data point to an alternative strategy for rebalancing the transcriptional dysregulation in HD.
Resumo:
HD (Huntington's disease) is a late onset heritable neurodegenerative disorder that is characterized by neuronal dysfunction and death, particularly in the cerebral cortex and medium spiny neurons of the striatum. This is followed by progressive chorea, dementia and emotional dysfunction, eventually resulting in death. HD is caused by an expanded CAG repeat in the first exon of the HD gene that results in an abnormally elongated polyQ (polyglutamine) tract in its protein product, Htt (Huntingtin). Wild-type Htt is largely cytoplasmic; however, in HD, proteolytic N-terminal fragments of Htt form insoluble deposits in both the cytoplasm and nucleus, provoking the idea that mutHtt (mutant Htt) causes transcriptional dysfunction. While a number of specific transcription factors and co-factors have been proposed as mediators of mutHtt toxicity, the causal relationship between these Htt/transcription factor interactions and HD pathology remains unknown. Previous work has highlighted REST [RE1 (repressor element 1)-silencing transcription factor] as one such transcription factor. REST is a master regulator of neuronal genes, repressing their expression. Many of its direct target genes are known or suspected to have a role in HD pathogenesis, including BDNF (brain-derived neurotrophic factor). Recent evidence has also shown that REST regulates transcription of regulatory miRNAs (microRNAs), many of which are known to regulate neuronal gene expression and are dysregulated in HD. Thus repression of miRNAs constitutes a second, indirect mechanism by which REST can alter the neuronal transcriptome in HD. We will describe the evidence that disruption to the REST regulon brought about by a loss of interaction between REST and mutHtt may be a key contributory factor in the widespread dysregulation of gene expression in HD.
Resumo:
Hydrological ensemble prediction systems (HEPS) have in recent years been increasingly used for the operational forecasting of floods by European hydrometeorological agencies. The most obvious advantage of HEPS is that more of the uncertainty in the modelling system can be assessed. In addition, ensemble prediction systems generally have better skill than deterministic systems both in the terms of the mean forecast performance and the potential forecasting of extreme events. Research efforts have so far mostly been devoted to the improvement of the physical and technical aspects of the model systems, such as increased resolution in time and space and better description of physical processes. Developments like these are certainly needed; however, in this paper we argue that there are other areas of HEPS that need urgent attention. This was also the result from a group exercise and a survey conducted to operational forecasters within the European Flood Awareness System (EFAS) to identify the top priorities of improvement regarding their own system. They turned out to span a range of areas, the most popular being to include verification of an assessment of past forecast performance, a multi-model approach for hydrological modelling, to increase the forecast skill on the medium range (>3 days) and more focus on education and training on the interpretation of forecasts. In light of limited resources, we suggest a simple model to classify the identified priorities in terms of their cost and complexity to decide in which order to tackle them. This model is then used to create an action plan of short-, medium- and long-term research priorities with the ultimate goal of an optimal improvement of EFAS in particular and to spur the development of operational HEPS in general.
Resumo:
Climate model ensembles are widely heralded for their potential to quantify uncertainties and generate probabilistic climate projections. However, such technical improvements to modeling science will do little to deliver on their ultimate promise of improving climate policymaking and adaptation unless the insights they generate can be effectively communicated to decision makers. While some of these communicative challenges are unique to climate ensembles, others are common to hydrometeorological modeling more generally, and to the tensions arising between the imperatives for saliency, robustness, and richness in risk communication. The paper reviews emerging approaches to visualizing and communicating climate ensembles and compares them to the more established and thoroughly evaluated communication methods used in the numerical weather prediction domains of day-to-day weather forecasting (in particular probabilities of precipitation), hurricane and flood warning, and seasonal forecasting. This comparative analysis informs recommendations on best practice for climate modelers, as well as prompting some further thoughts on key research challenges to improve the future communication of climate change uncertainties.