951 resultados para Principal component analysis (PCA)
Resumo:
Aim The spotted knapweed (Centaurea stoebe), a plant native to south-east and central Europe, is highly invasive in North America. We investigated the spatio-temporal climatic niche dynamics of the spotted knapweed in North America along two putative eastern and western invasion routes. We then considered the patterns observed in the light of historical, ecological and evolutionary factors. Location Europe and North America. Methods The niche characteristics of the east and west invasive populations of spotted knapweed in North America were determined from documented occurrences over 120 consecutive years (1890-2010). The 2.5 and 97.5 percentiles of values along temperature and precipitation gradients, as given by the two first axes of a principal component axis (PCA), were then calculated. We additionally measured the climatic dissimilarity between invaded and native niches using a multivariate environmental similarity surface (MESS) analysis. Results Along both invasion routes, the species established in regions with climatic conditions that were similar to those in the native range in Europe. An initial spread in ruderal habitats always preceded spread in (semi-)natural habitats. In the east, the niche gradually increased over time until it reached limits similar to the native niche. Conversely, in the west the niche abruptly expanded after an extended time lag into climates not occupied in the native range; only the native cold niche limit was conserved. Main conclusions Our study reveals that different niche dynamics have taken place during the eastern and western invasions. This pattern indicates different combinations of historical, ecological and evolutionary factors in the two ranges. We hypothesize that the lack of a well-developed transportation network in the west at the time of the introduction of spotted knapweed confined the species to a geographically and climatically isolated region. The invasion of dry rangelands may have been favoured during the agricultural transition in the 1930s by release from natural enemies, local adaptation and less competitive vegetation, but further experimental and molecular studies are needed to explain these contrasting niche patterns fully. Our study illustrates the need and benefit of applying large-scale, temporally explicit approaches to understanding biological invasions.
Resumo:
The information provided by the alignment-independent GRid Independent Descriptors (GRIND) can be condensed by the application of principal component analysis, obtaining a small number of principal properties (GRIND-PP), which is more suitable for describing molecular similarity. The objective of the present study is to optimize diverse parameters involved in the obtention of the GRIND-PP and validate their suitability for applications, requiring a biologically relevant description of the molecular similarity. With this aim, GRIND-PP computed with a collection of diverse settings were used to carry out ligand-based virtual screening (LBVS) on standard conditions. The quality of the results obtained was remarkable and comparable with other LBVS methods, and their detailed statistical analysis allowed to identify the method settings more determinant for the quality of the results and their optimum. Remarkably, some of these optimum settings differ significantly from those used in previously published applications, revealing their unexplored potential. Their applicability in large compound database was also explored by comparing the equivalence of the results obtained using either computed or projected principal properties. In general, the results of the study confirm the suitability of the GRIND-PP for practical applications and provide useful hints about how they should be computed for obtaining optimum results.
Resumo:
Background: Peach fruit undergoes a rapid softening process that involves a number of metabolic changes. Storing fruit at low temperatures has been widely used to extend its postharvest life. However, this leads to undesired changes, such as mealiness and browning, which affect the quality of the fruit. In this study, a 2-D DIGE approach was designed to screen for differentially accumulated proteins in peach fruit during normal softening as well as under conditions that led to fruit chilling injury. Results:The analysis allowed us to identify 43 spots -representing about 18% of the total number analyzed- that show statistically significant changes. Thirty-nine of the proteins could be identified by mass spectrometry. Some of the proteins that changed during postharvest had been related to peach fruit ripening and cold stress in the past. However, we identified other proteins that had not been linked to these processes. A graphical display of the relationship between the differentially accumulated proteins was obtained using pairwise average-linkage cluster analysis and principal component analysis. Proteins such as endopolygalacturonase, catalase, NADP-dependent isocitrate dehydrogenase, pectin methylesterase and dehydrins were found to be very important for distinguishing between healthy and chill injured fruit. A categorization of the differentially accumulated proteins was performed using Gene Ontology annotation. The results showed that the 'response to stress', 'cellular homeostasis', 'metabolism of carbohydrates' and 'amino acid metabolism' biological processes were affected the most during the postharvest. Conclusions: Using a comparative proteomic approach with 2-D DIGE allowed us to identify proteins that showed stage-specific changes in their accumulation pattern. Several proteins that are related to response to stress, cellular homeostasis, cellular component organization and carbohydrate metabolism were detected as being differentially accumulated. Finally, a significant proportion of the proteins identified had not been associated with softening, cold storage or chilling injury-altered fruit before; thus, comparative proteomics has proven to be a valuable tool for understanding fruit softening and postharvest.
Resumo:
The fatty acids of olive oils of distinct quality grade from the most important European Union (EU) producer countries were chemically and isotopically characterized. The analytical approach utilized combined capillary column gas chromatography-mass spectrometry (GC/MS) and the novel technique of compound-specific isotope analysis (CSIA) through gas chromatography coupled to a stable isotope ratio mass spectrometer (IRMS) via a combustion (C) interface (GC/C/IRMS). This approach provides further insights into the control of the purity and geographical origin of oils sold as cold-pressed extra virgin olive oil with certified origin appellation. The results indicate that substantial enrichment in heavy carbon isotope (C-13) of the bulk oil and of individual fatty acids are related to (1) a thermally induced degradation due to deodorization or steam washing of the olive oils and (2) the potential blend with refined olive oil or other vegetable oils. The interpretation of the data is based on principal component analysis of the fatty acids concentrations and isotopic data (delta(13)C(oil), delta(13)C(16:0), delta(13)C(18:1)) and on the delta(13)C(16:0) vs delta(13)C(18:1) covariations. The differences in the delta(13)C values of palmitic and oleic acids are discussed in terms of biosynthesis of these acids in the plant tissue and admixture of distinct oils.
Resumo:
We consider two fundamental properties in the analysis of two-way tables of positive data: the principle of distributional equivalence, one of the cornerstones of correspondence analysis of contingency tables, and the principle of subcompositional coherence, which forms the basis of compositional data analysis. For an analysis to be subcompositionally coherent, it suffices to analyse the ratios of the data values. The usual approach to dimension reduction in compositional data analysis is to perform principal component analysis on the logarithms of ratios, but this method does not obey the principle of distributional equivalence. We show that by introducing weights for the rows and columns, the method achieves this desirable property. This weighted log-ratio analysis is theoretically equivalent to spectral mapping , a multivariate method developed almost 30 years ago for displaying ratio-scale data from biological activity spectra. The close relationship between spectral mapping and correspondence analysis is also explained, as well as their connection with association modelling. The weighted log-ratio methodology is applied here to frequency data in linguistics and to chemical compositional data in archaeology.
Resumo:
We consider the joint visualization of two matrices which have common rowsand columns, for example multivariate data observed at two time pointsor split accord-ing to a dichotomous variable. Methods of interest includeprincipal components analysis for interval-scaled data, or correspondenceanalysis for frequency data or ratio-scaled variables on commensuratescales. A simple result in matrix algebra shows that by setting up thematrices in a particular block format, matrix sum and difference componentscan be visualized. The case when we have more than two matrices is alsodiscussed and the methodology is applied to data from the InternationalSocial Survey Program.
Resumo:
Dual scaling of a subjects-by-objects table of dominance data (preferences,paired comparisons and successive categories data) has been contrasted with correspondence analysis, as if the two techniques were somehow different. In this note we show that dual scaling of dominance data is equivalent to the correspondence analysis of a table which is doubled with respect to subjects. We also show that the results of both methods can be recovered from a principal components analysis of the undoubled dominance table which is centred with respect to subject means.
Resumo:
The spatial variability of soil and plant properties exerts great influence on the yeld of agricultural crops. This study analyzed the spatial variability of the fertility of a Humic Rhodic Hapludox with Arabic coffee, using principal component analysis, cluster analysis and geostatistics in combination. The experiment was carried out in an area under Coffea arabica L., variety Catucai 20/15 - 479. The soil was sampled at a depth 0.20 m, at 50 points of a sampling grid. The following chemical properties were determined: P, K+, Ca2+, Mg2+, Na+, S, Al3+, pH, H + Al, SB, t, T, V, m, OM, Na saturation index (SSI), remaining phosphorus (P-rem), and micronutrients (Zn, Fe, Mn, Cu and B). The data were analyzed with descriptive statistics, followed by principal component and cluster analyses. Geostatistics were used to check and quantify the degree of spatial dependence of properties, represented by principal components. The principal component analysis allowed a dimensional reduction of the problem, providing interpretable components, with little information loss. Despite the characteristic information loss of principal component analysis, the combination of this technique with geostatistical analysis was efficient for the quantification and determination of the structure of spatial dependence of soil fertility. In general, the availability of soil mineral nutrients was low and the levels of acidity and exchangeable Al were high.
Resumo:
To study the stress-induced effects caused by wounding under a new perspective, a metabolomic strategy based on HPLC-MS has been devised for the model plant Arabidopsis thaliana. To detect induced metabolites and precisely localise these compounds among the numerous constitutive metabolites, HPLC-MS analyses were performed in a two-step strategy. In a first step, rapid direct TOF-MS measurements of the crude leaf extract were performed with a ballistic gradient on a short LC-column. The HPLC-MS data were investigated by multivariate analysis as total mass spectra (TMS). Principal components analysis (PCA) and hierarchical cluster analysis (HCA) on principal coordinates were combined for data treatment. PCA and HCA demonstrated a clear clustering of plant specimens selecting the highest discriminating ions given by the complete data analysis, leading to the specific detection of discrete-induced ions (m/z values). Furthermore, pool constitution with plants of homogeneous behaviour was achieved for confirmatory analysis. In this second step, long high-resolution LC profilings on an UPLC-TOF-MS system were used on pooled samples. This allowed to precisely localise the putative biological marker induced by wounding and by specific extraction of accurate m/z values detected in the screening procedure with the TMS spectra.
Resumo:
There is a need for more efficient methods giving insight into the complex mechanisms of neurotoxicity. Testing strategies including in vitro methods have been proposed to comply with this requirement. With the present study we aimed to develop a novel in vitro approach which mimics in vivo complexity, detects neurotoxicity comprehensively, and provides mechanistic insight. For this purpose we combined rat primary re-aggregating brain cell cultures with a mass spectrometry (MS)-based metabolomics approach. For the proof of principle we treated developing re-aggregating brain cell cultures for 48h with the neurotoxicant methyl mercury chloride (0.1-100muM) and the brain stimulant caffeine (1-100muM) and acquired cellular metabolic profiles. To detect toxicant-induced metabolic alterations the profiles were analysed using commercial software which revealed patterns in the multi-parametric dataset by principal component analyses (PCA), and recognised the most significantly altered metabolites. PCA revealed concentration-dependent cluster formations for methyl mercury chloride (0.1-1muM), and treatment-dependent cluster formations for caffeine (1-100muM) at sub-cytotoxic concentrations. Four relevant metabolites responsible for the concentration-dependent alterations following methyl mercury chloride treatment could be identified using MS-MS fragmentation analysis. These were gamma-aminobutyric acid, choline, glutamine, creatine and spermine. Their respective mass ion intensities demonstrated metabolic alterations in line with the literature and suggest that the metabolites could be biomarkers for mechanisms of neurotoxicity or neuroprotection. In addition, we evaluated whether the approach could identify neurotoxic potential by testing eight compounds which have target organ toxicity in the liver, kidney or brain at sub-cytotoxic concentrations. PCA revealed cluster formations largely dependent on target organ toxicity indicating possible potential for the development of a neurotoxicity prediction model. With such results it could be useful to perform a validation study to determine the reliability, relevance and applicability of this approach to neurotoxicity screening. Thus, for the first time we show the benefits and utility of in vitro metabolomics to comprehensively detect neurotoxicity and to discover new biomarkers.
Resumo:
The present study discusses retention criteria for principal components analysis (PCA) applied to Likert scale items typical in psychological questionnaires. The main aim is to recommend applied researchers to restrain from relying only on the eigenvalue-than-one criterion; alternative procedures are suggested for adjusting for sampling error. An additional objective is to add evidence on the consequences of applying this rule when PCA is used with discrete variables. The experimental conditions were studied by means of Monte Carlo sampling including several sample sizes, different number of variables and answer alternatives, and four non-normal distributions. The results suggest that even when all the items and thus the underlying dimensions are independent, eigenvalues greater than one are frequent and they can explain up to 80% of the variance in data, meeting the empirical criterion. The consequences of using Kaiser"s rule are illustrated with a clinical psychology example. The size of the eigenvalues resulted to be a function of the sample size and the number of variables, which is also the case for parallel analysis as previous research shows. To enhance the application of alternative criteria, an R package was developed for deciding the number of principal components to retain by means of confidence intervals constructed about the eigenvalues corresponding to lack of relationship between discrete variables.
Resumo:
The model plant Arabidopsis thaliana was studied for the search of new metabolites involved in wound signalling. Diverse LC approaches were considered in terms of efficiency and analysis time and a 7-min gradient on a UPLC-TOF-MS system with a short column was chosen for metabolite fingerprinting. This screening step was designed to allow the comparison of a high number of samples over a wide range of time points after stress induction in positive and negative ionisation modes. Thanks to data treatment, clear discrimination was obtained, providing lists of potential stress-induced ions. In a second step, the fingerprinting conditions were transferred to longer column, providing a higher peak capacity able to demonstrate the presence of isomers among the highlighted compounds.
Resumo:
The aim of this work is to study the influence of several analytical parameters on the variability of Raman spectra of paint samples. In the present study, microtome thin section and direct (no preparation) analysis are considered as sample preparation. In order to evaluate their influence on the measures, an experimental design such as 'fractional full factorial' with seven factors (including the sampling process) is applied, for a total of 32 experiments representing 160 measures. Once the influence of sample preparation highlighted, a depth profile of a paint sample is carried out by changing the focusing plane in order to measure the colored layer under a clearcoat. This is undertaken in order to avoid sample preparation such a microtome sectioning. Finally, chemometric treatments such as principal component analysis are applied to the resulting spectra. The findings of this study indicate the importance of sample preparation, or more specifically, the surface roughness, on the variability of the measurements on a same sample. Moreover, the depth profile experiment highlights the influence of the refractive index of the upper layer (clearcoat) when measuring through a transparent layer.
Principal components analysis for quality evaluation of cooled banana 'Nanicão' in different packing
Resumo:
This work aims determinate the evaluation of the quality of 'Nanicão' banana, submitted to two conditions of storage temperature and three different kinds of package, using the technique of the Analysis of Principal Components (ACP), as a basis for an Analysis of Variance. The fruits used were 'Nanicão' bananas, at ripening degree 3, that is, more green than yellow. The packages tested were: "Torito" wood boxes, load capacity: 18 kg; "½ box" wood boxes, load capacity: 13 kg; and cardboard boxes, load capacity: 18 kg. The temperatures assessed were: room temperature (control); and (13±1ºC), with humidity controlled to 90±2,5%. Fruits were discarded when a sensory analysis determined they had become unfit for consumption. Peel coloration, percentages of imperfection, fresh mass, total acidity, pH, total soluble solids and percentages of sucrose were assessed. A completely randomized design with a 2-factorial treatment structure (packing X temperature) was used. The obtained data were analyzed through a multivariate analysis known as Principal Components Analysis, using S-plus 4.2. The conclusion was that the best packages to preserve the fruit were the ½ box ones, which proves that it is necessary to reduce the number of fruits per package to allow better ventilation and decreases mechanical injuries and ensure quality for more time.
Resumo:
Diplomityössä on käsitelty uudenlaisia menetelmiä riippumattomien komponenttien analyysiin(ICA): Menetelmät perustuvat colligaatioon ja cross-momenttiin. Colligaatio menetelmä perustuu painojen colligaatioon. Menetelmässä on käytetty kahden tyyppisiä todennäköisyysjakaumia yhden sijasta joka perustuu yleiseen itsenäisyyden kriteeriin. Työssä on käytetty colligaatio lähestymistapaa kahdella asymptoottisella esityksellä. Gram-Charlie ja Edgeworth laajennuksia käytetty arvioimaan todennäköisyyksiä näissä menetelmissä. Työssä on myös käytetty cross-momentti menetelmää joka perustuu neljännen asteen cross-momenttiin. Menetelmä on hyvin samankaltainen FastICA algoritmin kanssa. Molempia menetelmiä on tarkasteltu lineaarisella kahden itsenäisen muuttajan sekoituksella. Lähtö signaalit ja sekoitetut matriisit ovattuntemattomia signaali lähteiden määrää lukuunottamatta. Työssä on vertailtu colligaatio menetelmään ja sen modifikaatioita FastICA:an ja JADE:en. Työssä on myös tehty vertailu analyysi suorituskyvyn ja keskusprosessori ajan suhteen cross-momenttiin perustuvien menetelmien, FastICA:n ja JADE:n useiden sekoitettujen parien kanssa.