794 resultados para Preschool mathematics education
Resumo:
Maximum-likelihood decoding is often the optimal decoding rule one can use, but it is very costly to implement in a general setting. Much effort has therefore been dedicated to find efficient decoding algorithms that either achieve or approximate the error-correcting performance of the maximum-likelihood decoder. This dissertation examines two approaches to this problem. In 2003 Feldman and his collaborators defined the linear programming decoder, which operates by solving a linear programming relaxation of the maximum-likelihood decoding problem. As with many modern decoding algorithms, is possible for the linear programming decoder to output vectors that do not correspond to codewords; such vectors are known as pseudocodewords. In this work, we completely classify the set of linear programming pseudocodewords for the family of cycle codes. For the case of the binary symmetric channel, another approximation of maximum-likelihood decoding was introduced by Omura in 1972. This decoder employs an iterative algorithm whose behavior closely mimics that of the simplex algorithm. We generalize Omura's decoder to operate on any binary-input memoryless channel, thus obtaining a soft-decision decoding algorithm. Further, we prove that the probability of the generalized algorithm returning the maximum-likelihood codeword approaches 1 as the number of iterations goes to infinity.
Resumo:
As with many organisms across the globe, Cicindela nevadica lincolniana is threatened with extinction. Understanding ecological factors that contribute to extinction vulnerability and what methods aid in the recovery of those species is essential in developing successful conservation programs. Here we examine behavioral mechanisms for niche partitioning along with improving techniques for captive rearing protocol and increasing public awareness about the conservation of this local insect. Ovipositional selectivity was examined for Cicindela nevadica lincolniana, Cicindela circumpicta, Cicindela togata, Cicindela punctulata, and Cicindela fulgida. Models reflect that these species of co-occurring tiger beetles select different ranges of salinity in which to oviposit thereby reducing the potential for interspecific competition. In a second study, thermoregulatory niche partitioning was examined for the same complex of tiger beetle species. Time spent in the sun, on different substrates, and engaging in various behaviors associated with thermoregulation were significantly different during different parts of the day and between species. I continued along a previous line of study to develop a viable captive rearing program. So far fourteen adult Cicindela nevadica lincolniana have been successfully reared in captivity. Overwintering mortality has been determined as a key factor in the mortality of this species in captivity. Finally, I examined the potential for using the visual arts to promote the conservation of Cicindela nevadica lincolniana and associated saline wetlands. The results from surveys conducted at the exhibit suggest that art exhibits can have a strong positive impact on members of the community.
Resumo:
The decreasing number of women who are graduating in the Science, Technology, Engineering and Mathematics (STEM) fields continues to be a major concern. Despite national support in the form of grants provided by National Science Foundation, National Center for Information and Technology and legislation passed such as the Deficit Reduction Act of 2005 that encourages women to enter the STEM fields, the number of women actually graduating in these fields is surprisingly low. This research study focuses on a robotics competition and its ability to engage female adolescents in STEM curricula. Data have been collected to help explain why young women are reticent to take technology or engineering type courses in high school and college. Factors that have been described include attitudes, parental support, social aspects, peer pressure, and lack of role models. Often these courses were thought to have masculine and “nerdy” overtones. The courses were usually majority male enrollments and appeared to be very competitive. With more female adolescents engaging in this type of competitive atmosphere, this study gathered information to discover what about the competition appealed to these young women. Focus groups were used to gather information from adolescent females who were participating in the First Lego League (FLL) and CEENBoT competitions. What enticed them to participate in a curriculum that data demonstrated many of their peers avoided? FLL and CEENBoT are robotics programs based on curricula that are taught in afterschool programs in non-formal environments. These programs culminate in a very large robotics competition. My research questions included: What are the factors that encouraged participants to participate in the robotics competition? What was the original enticement to the FLL and CEENBoT programs? What will make participants want to come back and what are the participants’ plans for the future? My research mirrored data of previous findings such as lack of role models, the need for parental support, social stigmatisms and peer pressure are still major factors that determine whether adolescent females seek out STEM activities. An interesting finding, which was an exception to previous findings, was these female adolescents enjoyed the challenge of the competition. The informal learning environments encouraged an atmosphere of social engagement and cooperative learning. Many volunteers that led the afterschool programs were women (role models) and a majority of parents showed support by accommodating an afterschool situation. The young women that were engaged in the competition noted it was a friendly competition, but they were all there to win. All who participated in the competition had a similar learning environment: competitive but cooperative. Further research is needed to determine if it is the learning environment that lures adolescent females to the program and entices them to continue in the STEM fields or if it is the competitive aspect of the culminating activity. Advisors: James King and Allen Steckelberg
Resumo:
Topics include: Free groups and presentations; Automorphism groups; Semidirect products; Classification of groups of small order; Normal series: composition, derived, and solvable series; Algebraic field extensions, splitting fields, algebraic closures; Separable algebraic extensions, the Primitive Element Theorem; Inseparability, purely inseparable extensions; Finite fields; Cyclotomic field extensions; Galois theory; Norm and trace maps of an algebraic field extension; Solvability by radicals, Galois' theorem; Transcendence degree; Rings and modules: Examples and basic properties; Exact sequences, split short exact sequences; Free modules, projective modules; Localization of (commutative) rings and modules; The prime spectrum of a ring; Nakayama's lemma; Basic category theory; The Hom functors; Tensor products, adjointness; Left/right Noetherian and Artinian modules; Composition series, the Jordan-Holder Theorem; Semisimple rings; The Artin-Wedderburn Theorem; The Density Theorem; The Jacobson radical; Artinian rings; von Neumann regular rings; Wedderburn's theorem on finite division rings; Group representations, character theory; Integral ring extensions; Burnside's paqb Theorem; Injective modules.
Resumo:
Topics include: Semicontinuity, equicontinuity, absolute continuity, metric spaces, compact spaces, Ascoli’s theorem, Stone Weierstrass theorem, Borel and Lebesque measures, measurable functions, Lebesque integration, convergence theorems, Lp spaces, general measure and integration theory, Radon- Nikodyn theorem, Fubini theorem, Lebesque-Stieltjes integration, Semicontinuity, equicontinuity, absolute continuity, metric spaces, compact spaces, Ascoli’s theorem, Stone Weierstrass theorem, Borel and Lebesque measures, measurable functions, Lebesque integration, convergence theorems, Lp spaces, general measure and integration theory, Radon-Nikodyn theorem, Fubini theorem, Lebesque-Stieltjes integration.
Resumo:
Topics include: Rings, ideals, algebraic sets and affine varieties, modules, localizations, tensor products, intersection multiplicities, primary decomposition, the Nullstellensatz
Resumo:
This course was an overview of what are known as the “Homological Conjectures,” in particular, the Zero Divisor Conjecture, the Rigidity Conjecture, the Intersection Conjectures, Bass’ Conjecture, the Superheight Conjecture, the Direct Summand Conjecture, the Monomial Conjecture, the Syzygy Conjecture, and the big and small Cohen Macaulay Conjectures. Many of these are shown to imply others. This document contains notes for a course taught by Tom Marley during the 2009 spring semester at the University of Nebraska-Lincoln. The notes loosely follow the treatment given in Chapters 8 and 9 of Cohen-Macaulay Rings, by W. Bruns and J. Herzog, although many other sources, including articles and monographs by Peskine, Szpiro, Hochster, Huneke, Grith, Evans, Lyubeznik, and Roberts (to name a few), were used. Special thanks to Laura Lynch for putting these notes into LaTeX.
Resumo:
Topics covered are: Cohen Macaulay modules, zero-dimensional rings, one-dimensional rings, hypersurfaces of finite Cohen-Macaulay type, complete and henselian rings, Krull-Remak-Schmidt, Canonical modules and duality, AR sequences and quivers, two-dimensional rings, ascent and descent of finite Cohen Macaulay type, bounded Cohen Macaulay type.
Resumo:
Topics include: Injective Module, Basic Properties of Local Cohomology Modules, Local Cohomology as a Cech Complex, Long exact sequences on Local Cohomology, Arithmetic Rank, Change of Rings Principle, Local Cohomology as a direct limit of Ext modules, Local Duality, Chevelley’s Theorem, Hartshorne- Lichtenbaum Vanishing Theorem, Falting’s Theorem.
Resumo:
Topics include: Topological space and continuous functions (bases, the product topology, the box topology, the subspace topology, the quotient topology, the metric topology), connectedness (path connected, locally connected), compactness, completeness, countability, filters, and the fundamental group.
Resumo:
Pós-graduação em Educação Matemática - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This research aims to understand the assessment practices used by teachers at a public state school in the city of Cunha, Sao Paulo. To this end, we interviewed five mathematics teachers, who answered a questionnaire with five questions. The responses were analyzed according to the rigor of phenomenological research. To understand the investigation region, that is to say, the meaning of evaluation, we proceeded to a review of studies on the subject in authors like Buriasco (2002), Pavanello (2006), Hoffmann (1994), expressive in Mathematics Education that allows us to explain the concept of prevailing interpretation in the area. The phenomenological analysis enabled the development of three categories open revealing the concept of evaluation of teachers investigated. The first shows the review As a way to measure the knowledge acquired by the student. His interpretation leads us to understand that for some teachers, the research subjects, the assessment becomes a method to ' measure ' the knowledge acquired by the student. The second category, expressed by As a way of understanding the student's behavior in class, shows that some of the interviewees understand the evaluation as a medium that reveals and appreciates the ways of the student behave in class. Finally, the third category refers to the evaluation by means of said instruments. On this subject the claim that the assessment is through instruments such that: evidence, exercise lists, among others. In summary, interviews and categories analyzed explain the ways in which the assessment reveals the concept of implicit learning the instruments used in the evaluation practices of teachers interviewed. However, the authors read, evaluation is a necessary and permanent teaching job in teaching, which must follow step by step the process of teaching and learning. It follows, ... (Complete abstract click electronic access below)
Resumo:
In this paper we focus on the application of two mathematical alternative tasks to the teaching and learning of functions with high school students. The tasks were elaborated according to the following methodological approach: (i) Problem Solving and/or mathematics investigation and (ii) a pedagogical proposal, which defends that mathematical knowledge is developed by means of a balance between logic and intuition. We employed a qualitative research approach (characterized as a case study) aimed at analyzing the didactic pedagogical potential of this type of methodology in high school. We found that tasks such as those presented and discussed in this paper provide a more significant learning for the students, allowing a better conceptual understanding, becoming still more powerful when one considers the social-cultural context of the students.
Resumo:
Statistics is a required course in virtually all undergraduate programs in Brazilian universities. In addition, undergraduate programs in Statistics are offered in many public universities. However, despite the importance of this science, there are no systematic studies in the national literature regarding the characterization of the faculty staff, which is responsible for the teaching of statistics in the country. In this context, this paper presents a description of the faculty members of undergraduate courses in Statistics. This description was based on a descriptive sample, related to aspects of their education and scientific production. A prediction of future demand for PhDs in Statistics to fill the vacancies is also provided based on the retirement of faculty members in undergraduate courses in Statistics in the country.