925 resultados para Power method
Resumo:
Titanium and its alloys have been used in dentistry due to their excellent corrosion resistance and biocompatibility. It was shown that even a pure titanium metal and its alloys spontaneously form a bone-like apatite layer on their surfaces within a living body. The purpose of this work was to evaluate the growth of calcium phosphates at the surface of the experimental alloy Ti-7.5Mo. We produced ingots from pure titanium and molybdenum using an arc-melting furnace We then submitted these Ingots to heat treatment at 1100 degrees C for one hour, cooled the samples in water, and cold-worked the cooled material by swaging and machining. We measured the media roughness (Ra) with a roughness meter (1.3 and 2.6 mu m) and cut discs (13 mm in diameter and 4 mm in thickness) from each sample group. The samples were treated by biomimetic methods for 7 or 14 days to form an apatite coating on the surface. We then characterized the surfaces with an optical profilometer, a scanning electron microscope and contact angle measurements. The results of this study indicate that apatite can form on the surface of a Ti-7.5Mo alloy, and that a more complete apatite layer formed on the Ra = 2 6 mu m material. This Increased apatite formation resulted in a lower contact angle (C) 2010 Elsevier B.V. All rights reserved
Resumo:
A type of Nb(2)O(5)center dot 3H(2)O was synthesized and its phosphate removal potential was investigated in this study. The kinetic study, adsorption isotherm, pH effect, thermodynamic study and desorption were examined in batch experiments. The kinetic process was described by a pseudo-second-order rate model very well. The phosphate adsorption tended to increase with a decrease of pH. The adsorption data fitted well to the Langmuir model with which the maximum P adsorption capacity was estimated to be 18.36 mg-Pg(-1). The peak appearing at 1050 cm(-1) in IR spectra after adsorption was attributed to the bending vibration of adsorbed phosphate. The positive values of both Delta H degrees and Delta S degrees suggest an endothermic reaction and increase in randomness at the solid-liquid interface during the adsorption. Delta G degrees values obtained were negative indicating a spontaneous adsorption process. A phosphate desorbability of approximately 68% was observed with water at pH 12, which indicated a relatively strong bonding between the adsorbed phosphate and the sorptive sites on the surface of the adsorbent. The immobilization of phosphate probably occurs by the mechanisms of ion exchange and physicochemical attraction. Due to its high adsorption capacity, this type of hydrous niobium oxide has the potential for application to control phosphorus pollution.
Resumo:
The objective of this study is to graft the Surface of carbon black, by chemically introducing polymeric chains (Nafion (R) like) with proton-conducting properties. This procedure aims for a better interaction of the proton-conducting phase with the metallic catalyst particles, as well as hinders posterior support particle agglomeration. Also loss of active surface call be prevented. The proton conduction between the active electrocatalyst site and the Nafion (R) ionomer membrane should be enhanced, thus diminishing the ohmic drop ill the polymer electrolyte membrane fuel cell (PEMFC). PtRu nanoparticles were supported on different carbon materials by the impregnation method and direct reduction with ethylene glycol and characterized using amongst others FTIR, XRD and TEM. The screen printing technique was used to produce membrane electrode assemblies (MEA) for single cell tests in H(2)/air(PEMFC) and methanol operation (DMFC). In the PEMFC experiments, PtRu supported on grafted carbon shows 550 mW cm(-2) gmetal(-1) power density, which represents at least 78% improvement in performance, compared to the power density of commercial PtRu/C ETEK. The DMFC results of the grafted electrocatalyst achieve around 100% improvement. The polarization Curves results clearly show that the main Cause of the observed effect is the reduction in ohmic drop, caused by the grafted polymer. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Optical monitoring systems are necessary to manufacture multilayer thin-film optical filters with low tolerance on spectrum specification. Furthermore, to have better accuracy on the measurement of film thickness, direct monitoring is a must. Direct monitoring implies acquiring spectrum data from the optical component undergoing the film deposition itself, in real time. In making film depositions on surfaces of optical components, the high vacuum evaporator chamber is the most popular equipment. Inside the evaporator, at the top of the chamber, there is a metallic support with several holes where the optical components are assembled. This metallic support has rotary motion to promote film homogenization. To acquire a measurement of the spectrum of the film in deposition, it is necessary to pass a light beam through a glass witness undergoing the film deposition process, and collect a sample of the light beam using a spectrometer. As both the light beam and the light collector are stationary, a synchronization system is required to identify the moment at which the optical component passes through the light beam.
Resumo:
In this paper, artificial neural networks are employed in a novel approach to identify harmonic components of single-phase nonlinear load currents, whose amplitude and phase angle are subject to unpredictable changes, even in steady-state. The first six harmonic current components are identified through the variation analysis of waveform characteristics. The effectiveness of this method is tested by applying it to the model of a single-phase active power filter, dedicated to the selective compensation of harmonic current drained by an AC controller. Simulation and experimental results are presented to validate the proposed approach. (C) 2010 Elsevier B. V. All rights reserved.
Resumo:
The power loss reduction in distribution systems (DSs) is a nonlinear and multiobjective problem. Service restoration in DSs is even computationally hard since it additionally requires a solution in real-time. Both DS problems are computationally complex. For large-scale networks, the usual problem formulation has thousands of constraint equations. The node-depth encoding (NDE) enables a modeling of DSs problems that eliminates several constraint equations from the usual formulation, making the problem solution simpler. On the other hand, a multiobjective evolutionary algorithm (EA) based on subpopulation tables adequately models several objectives and constraints, enabling a better exploration of the search space. The combination of the multiobjective EA with NDE (MEAN) results in the proposed approach for solving DSs problems for large-scale networks. Simulation results have shown the MEAN is able to find adequate restoration plans for a real DS with 3860 buses and 632 switches in a running time of 0.68 s. Moreover, the MEAN has shown a sublinear running time in function of the system size. Tests with networks ranging from 632 to 5166 switches indicate that the MEAN can find network configurations corresponding to a power loss reduction of 27.64% for very large networks requiring relatively low running time.
Resumo:
Two different fuzzy approaches to voltage control in electric power distribution systems are introduced in this paper. The real-time controller in each case would act on power transformers equipped with under-load tap changers. Learning systems are employed to turn the voltage-control relays into adaptive devices. The scope of this study has been limited to the power distribution substation, and the voltage measurements and control actions are carried out on the secondary bus. The capacity of fuzzy systems to handle approximate data, together with their unique ability to interpret qualitative information, make it possible to design voltage-control strategies that satisfy the requirements of the Brazilian regulatory bodies and the real concerns of the electric power distribution companies. Fuzzy control systems based on these two strategies have been implemented and the test results were highly satisfactory.
Resumo:
A fuzzy control strategy for voltage regulation in electric power distribution systems is introduced in this article. This real-time controller would act on power transformers equipped with under-load tap changers. The fuzzy system was employed to turn the voltage-control relays into adaptive devices. The scope of the present study has been limited to the power distribution substation, and both the voltage measurements and control actions are carried out on the secondary bus. The capacity of fuzzy systems to handle approximate data, together with their unique ability to interpret qualitative information, make it possible to design voltage control strategies that satisfy both the requirements of the Brazilian regulatory bodies and the real concerns of the electric power distribution companies. A prototype based on the fuzzy control strategy proposed in this paper has also been implemented for validation purposes and its experimental results were highly satisfactory.
Resumo:
The main objective of this paper is to relieve the power system engineers from the burden of the complex and time-consuming process of power system stabilizer (PSS) tuning. To achieve this goal, the paper proposes an automatic process for computerized tuning of PSSs, which is based on an iterative process that uses a linear matrix inequality (LMI) solver to find the PSS parameters. It is shown in the paper that PSS tuning can be written as a search problem over a non-convex feasible set. The proposed algorithm solves this feasibility problem using an iterative LMI approach and a suitable initial condition, corresponding to a PSS designed for nominal operating conditions only (which is a quite simple task, since the required phase compensation is uniquely defined). Some knowledge about the PSS tuning is also incorporated in the algorithm through the specification of bounds defining the allowable PSS parameters. The application of the proposed algorithm to a benchmark test system and the nonlinear simulation of the resulting closed-loop models demonstrate the efficiency of this algorithm. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A hybrid system to automatically detect, locate and classify disturbances affecting power quality in an electrical power system is presented in this paper. The disturbances characterized are events from an actual power distribution system simulated by the ATP (Alternative Transients Program) software. The hybrid approach introduced consists of two stages. In the first stage, the wavelet transform (WT) is used to detect disturbances in the system and to locate the time of their occurrence. When such an event is flagged, the second stage is triggered and various artificial neural networks (ANNs) are applied to classify the data measured during the disturbance(s). A computational logic using WTs and ANNs together with a graphical user interface (GU) between the algorithm and its end user is then implemented. The results obtained so far are promising and suggest that this approach could lead to a useful application in an actual distribution system. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a new approach, predictor-corrector modified barrier approach (PCMBA), to minimize the active losses in power system planning studies. In the PCMBA, the inequality constraints are transformed into equalities by introducing positive auxiliary variables. which are perturbed by the barrier parameter, and treated by the modified barrier method. The first-order necessary conditions of the Lagrangian function are solved by predictor-corrector Newton`s method. The perturbation of the auxiliary variables results in an expansion of the feasible set of the original problem, reaching the limits of the inequality constraints. The feasibility of the proposed approach is demonstrated using various IEEE test systems and a realistic power system of 2256-bus corresponding to the Brazilian South-Southeastern interconnected system. The results show that the utilization of the predictor-corrector method with the pure modified barrier approach accelerates the convergence of the problem in terms of the number of iterations and computational time. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The main purpose of this paper is to present architecture of automated system that allows monitoring and tracking in real time (online) the possible occurrence of faults and electromagnetic transients observed in primary power distribution networks. Through the interconnection of this automated system to the utility operation center, it will be possible to provide an efficient tool that will assist in decisionmaking by the Operation Center. In short, the desired purpose aims to have all tools necessary to identify, almost instantaneously, the occurrence of faults and transient disturbances in the primary power distribution system, as well as to determine its respective origin and probable location. The compilations of results from the application of this automated system show that the developed techniques provide accurate results, identifying and locating several occurrences of faults observed in the distribution system.
Resumo:
This paper presents a new approach to the transmission loss allocation problem in a deregulated system. This approach belongs to the set of incremental methods. It treats all the constraints of the network, i.e. control, state and functional constraints. The approach is based on the perturbation of optimum theorem. From a given optimal operating point obtained by the optimal power flow the loads are perturbed and a new optimal operating point that satisfies the constraints is determined by the sensibility analysis. This solution is used to obtain the allocation coefficients of the losses for the generators and loads of the network. Numerical results show the proposed approach in comparison to other methods obtained with well-known transmission networks, IEEE 14-bus. Other test emphasizes the importance of considering the operational constraints of the network. And finally the approach is applied to an actual Brazilian equivalent network composed of 787 buses, and it is compared with the technique used nowadays by the Brazilian Control Center. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In this study, the innovation approach is used to estimate the measurement total error associated with power system state estimation. This is required because the power system equations are very much correlated with each other and as a consequence part of the measurements errors is masked. For that purpose an index, innovation index (II), which provides the quantity of new information a measurement contains is proposed. A critical measurement is the limit case of a measurement with low II, it has a zero II index and its error is totally masked. In other words, that measurement does not bring any innovation for the gross error test. Using the II of a measurement, the masked gross error by the state estimation is recovered; then the total gross error of that measurement is composed. Instead of the classical normalised measurement residual amplitude, the corresponding normalised composed measurement residual amplitude is used in the gross error detection and identification test, but with m degrees of freedom. The gross error processing turns out to be very simple to implement, requiring only few adaptations to the existing state estimation software. The IEEE-14 bus system is used to validate the proposed gross error detection and identification test.
Resumo:
This work proposes a method based on both preprocessing and data mining with the objective of identify harmonic current sources in residential consumers. In addition, this methodology can also be applied to identify linear and nonlinear loads. It should be emphasized that the entire database was obtained through laboratory essays, i.e., real data were acquired from residential loads. Thus, the residential system created in laboratory was fed by a configurable power source and in its output were placed the loads and the power quality analyzers (all measurements were stored in a microcomputer). So, the data were submitted to pre-processing, which was based on attribute selection techniques in order to minimize the complexity in identifying the loads. A newer database was generated maintaining only the attributes selected, thus, Artificial Neural Networks were trained to realized the identification of loads. In order to validate the methodology proposed, the loads were fed both under ideal conditions (without harmonics), but also by harmonic voltages within limits pre-established. These limits are in accordance with IEEE Std. 519-1992 and PRODIST (procedures to delivery energy employed by Brazilian`s utilities). The results obtained seek to validate the methodology proposed and furnish a method that can serve as alternative to conventional methods.