913 resultados para Positive and sign changing solutions
Resumo:
Undoped and Te-doped gallium antimonide (GaSb) layers have been grown on GaSb bulk substrates by the liquid phase epitaxial technique from Ga-rich and Sb-rich melts. The nucleation morphology of the grown layers has been studied as a function of growth temperature and substrate orientation. MOS structures have been fabricated on the epilayers to evaluate the native defect content in the grown layers from the C-V characteristics. Layers grown from antimony rich melts always exhibit p-type conductivity. In contrast, a type conversion from p- to n- was observed in layers grown from gallium rich melts below 400 degrees C. The electron mobility of undoped n-type layers grown from Ga-rich melts and tellurium doped layers grown from Sb- and Ga-rich solutions has been evaluated.
Resumo:
Detailed Fourier line shape analysis has been performed on three different compositions of the composite matrix of Al-Si-Mg and SiC. The alloy composition in wt% is Al-7%Si, 0.35%Mg, 0.14%Fe and traces of copper and titanium (similar to 0.01%) with SiC varying from 0 to 30wt% in three steps i.e., 0, 10 and 30wt%. The line shift analysis has been performed by considering 111, 200, 220, 311 and 222 reflections after estimating their relative shift. Peak asymmetry analysis has been performed considering neighbouring 111 and 200 reflections and Fourier line shape analysis has been performed after considering the multiple orders 111 and 222, 200 and 400 reflections. Combining all these three analyses it has been found that the deformation stacking faults both intrinsic alpha' and extrinsic alpha " are absent in this alloy system whereas the deformation twin beta has been found to be positive and increases with the increase of SiC concentration. So, like other Al-base alloys this ternary alloy also shows high stacking fault energy, and the addition of SiC introduces deformation twin which increases with its concentration in the deformed lattices.
Resumo:
A review of the structural and thermodynamic information and phase equilibria in the Cu-Fe-O system suggested that a consistent, quantitative description of the system is hampered by lack of data on activities in the spinel solid solution CuFe2O4-Fe3O4. Therefore the activity of Fe3O4 in this solid solution is derived from measurements of the oxygen potentials established at 1000°C by mixtures containing Fe2O3 and spinel solid solutions of known composition. The oxygen pressures were measured manometrically for solid solutions rich in CuFe2O4, while for Fe3O4-rich compositions the oxygen potentials were obtained by an emf technique. The activities show significant negative deviations from Raoult’s law. The compositions of the spinel solid solutions in equilibrium with CuO + CuFeO2 and Cu + CuFeO2 were obtained from chemical analysis of the solid solution after magnetic separation. The oxygen potential of the three-phase mixture Cu + CuFeO2 + Fe3O4(spinel s.s.) was determined by a solid oxide galvanic cell. From these measurements a complete phase diagram and consistent thermodynamic data on the ternary condensed phases, CuFeO2 and CuFeO2O4, were obtained. An analysis of the free energy of mixing of the spinel solid solution furnished information on the distribution of cations and their valencies between the tetrahedral and octahedral sites of the spinel lattice, which is consistent with X-ray diffraction, magnetic and Seebeck coefficient measurements.
Resumo:
The tie lines between (CoXMg1−X)O solid solution with rock salt structure and orthosilicate solid solution (CoYMg1−Y)-Si0.5O2, and between orthosilicate and metasilicate (CoZMg1-Z)SiO3 crystalline solutions, have been determined experimentally at 1373 K. The compositions of coexisting phases have been determined by electron probe microanalysis (EPMA) and lattice parameter measurement on equilibrated samples. The metasilicate solid solution exists only for 0 > Z > 0.213. The activity of CoO in the rock salt solid solution was determined as a function of composition and temperature in the range of 1023 to 1373 K using a solid-state galvanic cell: Pt, (CoXMg1−X)O+Co|(Y2O3)ZrO2|Co+CoO, Pt The free energy of mixing of (CoXMg1−X)O crystalline solution can be expressed by the equation ΔGE=X(1 −X)[(6048 − 2.146T)X+ (8745 − 3.09T)(1 −X)] J·mol−1 The thermodynamic data for the rock salt phase is combined with information on interphase partitioning of Co and Mg to generate the mixing properties for the ortho- and metasilicate solid solutions. For the orthosilicate solution (CoYMg1 −Y)Si0.5O2 at 1373 K, the excess Gibbs free energy of mixing is given by the relation ΔGE=Y(1 −Y)[2805Y+ 3261(1 −Y)] J·mol−1 For the metasilicate solution (CoZMg1 −Z)SiO3 at the same temperature, the excess free energy can be expressed by the relation ΔGE=Z(1 −Z)[2570Z+ 3627(1 −Z)] J·mol−1
Resumo:
In the paper, the total damping and synchronising torques, which determine the dynamic stability of a synchronous generator in a power system, have been traced to their origin. The positive and negative components released or consumed by the voltage regulator, and by the various windings of the machine, have been isolated, with the object of making a quantitative assessment of the effects of various gains and time constants on the dynamic stability of a synchronous machine under different operating conditions. The analysis is based on the properties of quadratic invariance in tensor calculus. An alternative solution by network analysis has also been provided to establish the validity of the tensor approach.
ZnO/Ag nanohybrid: synthesis, characterization, synergistic antibacterial activity and its mechanism
Resumo:
A highly homogeneous ZnO/Ag nanohybrid has been synthesized by a novel route, employing chitosan as mediator by purely electrostatic interaction. By employing various techniques such as powder XRD, UV-visible, IR spectroscopy and electron (SEM, TEM) microscopy, the formation of the nanohybrid has been established. The synergistic antibacterial effect of ZnO/Ag nanohybrid on Gram-positive and Gram-negative bacteria is found to be more effective, compared to the individual components (ZnO and Ag). Cytotoxicity experiments are carried out and the results are correlated to the solubility of the nanohybrid. A possible mechanism has been proposed for the antibacterial activity of ZnO/Ag nanohybrid, based on TEM studies on bacteria, carried out by employing the microtome technique and by EPR measurements on the hybrid.
Resumo:
In order to improve the tracking and erosion performance of outdoor polymeric silicone rubber (SR) insulators used in HV power transmission lines, micron sized inorganic fillers are usually added to the base SR matrix. In addition, insulators used in high voltage dc transmission lines are designed to have increased creepage distance to mitigate the tracking and erosion problems. ASTM D2303 standard gives a procedure for finding the tracking and erosion resistance of outdoor polymeric insulator weathershed material samples under laboratory conditions for ac voltages. In this paper, inclined plane (IP) tracking and erosion tests similar to ASTM D2303 were conducted under both positive and negative dc voltages for silicone rubber samples filled with micron and nano sized particles to understand the phenomena occurring during such tests. Micron sized Alumina Trihydrate (ATH) and nano sized alumina fillers were added to silicone rubber matrix to improve the resistance to tracking and erosion. The leakage current during the tests and the eroded mass at the end of the tests were monitored. Scanning Electron Microscopy (SEM) and Energy dispersive Xray (EDX) studies were conducted to understand the filler dispersion and the changes in surface morphology in both nanocomposite and microcomposite samples. The results suggest that nanocomposites performed better than microcomposites even for a small filler loading (4%) for both positive and negative dc stresses. It was also seen that the tracking and erosion performance of silicone rubber is better under negative dc as compared to positive dc voltage. EDX studies showed migration of different ions onto the surface of the sample during the IP test under positive dc which has led to an inferior performance as compared to the performance under negative dc.
Resumo:
Ant-plant interactions often are mediated by extrafloral nectar (EFN) composition that may influence plant visitation by ants. Over a 300 km range in the Indian Western Ghats, we investigated the correlation between the EFN composition of the myrmecophytic ant-plant Humboldtia brunonis (Fabaceae) and the number and species of ants visiting EFN. EFN composition varied among H. brunonis populations and between plant organs (floral bud vs. young leaf EFN). In general, EFN was rich in sugars with small quantities of amino acids, especially essential amino acids, and had moderate invertase activity. In experiments at the study sites with sugar and amino acid solutions and with leaf or floral bud EFN mimics, dominant EFN-feeding ants differentiated between solutions as well as between mimics. The castration parasite Crematogaster dohrni (northern study site) was the least selective and did not exhibit any clear feeding preferences, while the largely trophobiont-tending non-protective Myrmicaria brunnea (middle study site) preferred higher sucrose concentrations and certain essential/non-essential amino acid mixtures. The mutualistic Technomyrmex albipes (southern study site) preferred sucrose over glucose or fructose solutions and consumed the leaf EFN mimic to a greater extent than the floral bud EFN mimic. This young leaf EFN mimic had low sugar concentrations, the lowest viscosity and sugar: amino acid ratio, was rich in essential amino acids, and appeared ideally suited to the digestive physiology of T. albipes. This preference for young leaf EFN may explain the greater protection afforded to young leaves than to floral buds by T. albipes, and may also help to resolve ant-pollinator conflicts. The differential response of dominant ants to sugar, amino acids, or solution viscosity suggests that plants can fine-tune their interactions with local ants via EFN composition. Thus, EFN can mediate local partner-choice mechanisms in ant-plant interactions.
Resumo:
We present here an improvisation of HNN (Panchal, Bhavesh et al., 2001) called RD 3D HNCAN for backbone (HN, CA and N-15) assignment in both folded and unfolded proteins. This is a reduced dimensionality experiment which employs CA chemical shifts to improve dispersion. Distinct positive and negative peak patterns of various triplet segments along the polypeptide chain observed in HNN are retained and these provide start and check points for the sequential walk. Because of co-incrementing of CA and N-15, peaks along one of the dimensions appear at sums and differences of the CA and N-15 chemical shifts. This changes the backbone assignment protocol slightly and we present this in explicit detail. The performance of the experiment has been demonstrated using Ubiquitin and Plasmodium falciparum P2 proteins. The experiment is particularly valuable when two neighboring amino acid residues have nearly identical backbone N-15 chemical shifts. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
DNA three-way junctions (TWJs) are important intermediates in various cellular processes and are the simplest of a family of branched nucleic acids being considered as scaffolds for biomolecular nanotechnology. Branched nucleic acids are stabilized by divalent cations such as Mg2+, presumably due to condensation and neutralization of the negatively charged DNA backbone. However, electrostatic screening effects point to more complex solvation dynamics and a large role of interfacial waters in thermodynamic stability. Here, we report extensive computer simulations in explicit water and salt on a model TWJ and use free energy calculations to quantify the role of ionic character and strength on stability. We find that enthalpic stabilization of the first and second hydration shells by Mg2+ accounts for 1/3 and all of the free energy gain in 50% and pure MgCl2 solutions, respectively. The more distorted DNA molecule is actually destabilized in pure MgCl2 compared to pure NaCl. Notably, the first shell, interfacial waters have very low translational and rotational entropy (i.e., mobility) compared to the bulk, an entropic loss that is overcompensated by increased enthalpy from additional electrostatic interactions with Mg2+. In contrast, the second hydration shell has anomalously high entropy as it is trapped between an immobile and bulklike layer. The nonmonotonic entropic signature and long-range perturbations of the hydration shells to Mg2+ may have implications in the molecular recognition of these motifs. For example, we find that low salt stabilizes the parallel configuration of the three-way junction, whereas at normal salt we find antiparallel configurations deduced from the NMR. We use the 2PT analysis to follow the thermodynamics of this transition and find that the free energy barrier is dominated by entropic effects that result from the decreased surface area of the antiparallel form which has a smaller number of low entropy waters in the first monolayer.
Resumo:
A detailed low temperature magneto-transport study is carried out to understand the transport mechanism in pure and Co doped ZnO thin films grown by pulsed laser deposition (PLD) technique. A negative transverse magneto-resistance (MR) (with a value similar to 4% at 4.5 K) which decreases monotonically with the increase in temperature, is observed for the undoped ZnO film. A competition between positive and negative MR is observed for the Co doped ZnO samples. In this case at higher field values negative MR contribution dominates over the positive MR, which gives rise to a slope change in the MR data. Our data for MR shows excellent agreement with the semi-empirical formula given by Khosla et al., which is originally proposed for the degenerate semiconductors. This formula incorporates the third order perturbation expansion of the s-d exchange scattering of the conduction electrons from the localised spins. We have also obtained the Hall mobility, carrier conc. and mean free path as function of temperature for the pure ZnO film.
Resumo:
Quantum coherence can affect the thermodynamics of small quantum systems. Coherences have been shown to affect the power generated by a quantum heat engine (QHE) which is coupled to two thermal photon reservoirs and to an additional cavity mode. We show that the fluctuations of the heat exchanged between the QHE and the reservoirs strongly depend on quantum coherence, especially when the engine operates as a refrigerator, i.e., heat current flows from the cold bath to the hot bath. Intriguingly, we find that the ratio of positive and negative (with respect to the thermodynamic force) fluctuations in the heat current satisfies a universal coherence-independent fluctuation theorem.
Resumo:
In the last decade, there has been a tremendous interest in Graphene transistors. The greatest advantage for CMOS nanoelectronics applications is the fact that Graphene is compatible with planar CMOS technology and potentially offers excellent short channel properties. Because of the zero bandgap, it will not be possible to turn off the MOSFET efficiently and hence the typical on current to off current ratio (Ion/Ioff) has been less than 10. Several techniques have been proposed to open the bandgap in Graphene. It has been demonstrated, both theoretically and experimentally, that Graphene Nanoribbons (GNR) show a bandgap which is inversely proportional to their width. GNRs with about 20 nm width have bandgaps in the range of 100meV. But it is very difficult to obtain GNRs with well defined edges. An alternate technique to open the band gap is to use bilayer Graphene (BLG), with an asymmetric bias applied in the direction perpendicular to their plane. Another important CMOS metric, the subthreshold slope is also limited by the inability to turn off the transistor. However, these devices could be attractive for RF CMOS applications. But even for analog and RF applications the non-saturating behavior of the drain current can be an issue. Although some studies have reported current saturation, the mechanisms are still not very clear. In this talk we present some of our recent findings, based on simulations and experiments, and propose possible solutions to obtain high on current to off current ratio. A detailed study on high field transport in grapheme transistors, relevant for analog and RF applications will also be presented.
Resumo:
We construct and study classical solutions in Chern-Simons supergravity based on the superalgebra sl(N vertical bar N = 1). The algebra for the N = 3 case is written down explicitly using the fact that it arises as the global part of the super conformal W-3 superalgebra. For this case we construct new classical solutions and study their supersymmetry. Using the algebra we write down the Killing spinor equations and explicitly construct the Killing spinor for conical defects and black holes in this theory. We show that for the general sl(N|N - 1) theory the condition for the periodicity of the Killing spinor can be written in terms of the products of the odd roots of the super algebra and the eigenvalues of the holonomy matrix of the background. Thus the supersymmetry of a given background can be stated in terms of gauge invariant and well defined physical observables of the Chern-Simons theory. We then show that for N >= 4, the sl(N|N - 1) theory admits smooth supersymmetric conical defects.
Resumo:
Diffusion couple experiments are conducted in Co-Ni-Pt system at 1200 degrees C and in Co-Ni-Fe system at 1150 degrees C, by coupling binary alloys with the third element. Uphill diffusion is observed for both Co and Ni in Pt rich corner of the Co-Ni-Pt system, whereas in the Co-Ni-Fe system, it is observed for Co. Main and cross interdiffusion coefficients are calculated at the composition of intersection of two independent diffusion profiles. In both the systems, the main interdiffusion coefficients are positive over the whole composition range and the cross interdiffusion coefficients show both positive and negative values at different regions. Hardness measured by performing the nanoindentations on diffusion couples of both the systems shows the higher values at intermediate compositions.