819 resultados para Porous membranes
Resumo:
Tissue engineering is a discipline that aims at regenerating damaged biological tissues by using a cell-construct engineered in vitro made of cells grown into a porous 3D scaffold. The role of the scaffold is to guide cell growth and differentiation by acting as a bioresorbable temporary substrate that will be eventually replaced by new tissue produced by cells. As a matter or fact, the obtainment of a successful engineered tissue requires a multidisciplinary approach that must integrate the basic principles of biology, engineering and material science. The present Ph.D. thesis aimed at developing and characterizing innovative polymeric bioresorbable scaffolds made of hydrolysable polyesters. The potentialities of both commercial polyesters (i.e. poly-e-caprolactone, polylactide and some lactide copolymers) and of non-commercial polyesters (i.e. poly-w-pentadecalactone and some of its copolymers) were explored and discussed. Two techniques were employed to fabricate scaffolds: supercritical carbon dioxide (scCO2) foaming and electrospinning (ES). The former is a powerful technology that enables to produce 3D microporous foams by avoiding the use of solvents that can be toxic to mammalian cells. The scCO2 process, which is commonly applied to amorphous polymers, was successfully modified to foam a highly crystalline poly(w-pentadecalactone-co-e-caprolactone) copolymer and the effect of process parameters on scaffold morphology and thermo-mechanical properties was investigated. In the course of the present research activity, sub-micrometric fibrous non-woven meshes were produced using ES technology. Electrospun materials are considered highly promising scaffolds because they resemble the 3D organization of native extra cellular matrix. A careful control of process parameters allowed to fabricate defect-free fibres with diameters ranging from hundreds of nanometers to several microns, having either smooth or porous surface. Moreover, versatility of ES technology enabled to produce electrospun scaffolds from different polyesters as well as “composite” non-woven meshes by concomitantly electrospinning different fibres in terms of both fibre morphology and polymer material. The 3D-architecture of the electrospun scaffolds fabricated in this research was controlled in terms of mutual fibre orientation by properly modifying the instrumental apparatus. This aspect is particularly interesting since the micro/nano-architecture of the scaffold is known to affect cell behaviour. Since last generation scaffolds are expected to induce specific cell response, the present research activity also explored the possibility to produce electrospun scaffolds bioactive towards cells. Bio-functionalized substrates were obtained by loading polymer fibres with growth factors (i.e. biomolecules that elicit specific cell behaviour) and it was demonstrated that, despite the high voltages applied during electrospinning, the growth factor retains its biological activity once released from the fibres upon contact with cell culture medium. A second fuctionalization approach aiming, at a final stage, at controlling cell adhesion on electrospun scaffolds, consisted in covering fibre surface with highly hydrophilic polymer brushes of glycerol monomethacrylate synthesized by Atom Transfer Radical Polymerization. Future investigations are going to exploit the hydroxyl groups of the polymer brushes for functionalizing the fibre surface with desired biomolecules. Electrospun scaffolds were employed in cell culture experiments performed in collaboration with biochemical laboratories aimed at evaluating the biocompatibility of new electrospun polymers and at investigating the effect of fibre orientation on cell behaviour. Moreover, at a preliminary stage, electrospun scaffolds were also cultured with tumour mammalian cells for developing in vitro tumour models aimed at better understanding the role of natural ECM on tumour malignity in vivo.
Resumo:
Tethered bilayer lipid membranes provide an efficient, stable and versatile platform for the investigation of integrated membrane proteins. However, the incorporation of large proteins, as well as of proteins with a large submembrane part is still a very critical issue and therefore, further optimisation of the system is necessary. The central element of a tBLM is a lipid bilayer. Its proximal leaflet is, at least to some extend, covalently attached to a solid support via a spacer group. The anchor lipid consists of three distinct parts, a lipid headgroup, a spacer group and an anchor. All parts together influence the final bilayer properties. In the frame of this work, the synthesis of new thiolipids for tBLMs on gold has been investigated. The aim was to obtain molecules with longer spacers in order to increase the submembrane space. The systems obtained have been characterized using SPR and EIS. The results obtained during this study are multiple. First, the synthesis of a previously synthesized architecture was successfully scaled up in an industrial lab using a new synthetic approach. The synthesis of large amounts is now feasible. Then, the synthesis of the new thiolipids was carried out taking into account the following requirements: the increase of the submembrane space by having longer ethyleneglycol spacers, the attachment of the molecules to a gold substrate via a thiol bond, and the tunability of the lateral mobility by changing the lipid headgroup. Three different synthetic strategies have been investigated. The polymeric approach did not prove to be successful, merely because of the broad molecular weight distribution. The synthesis of heterofunctionally protected oligoethyleneglycols allowed to obtain ethyleneglycol moieties with 6 and 8 units, but the tedious purification steps gave very low yields. Finally, the block by block synthesis using ethyleneglycol precursors proved to be an efficient and fast method to synthesize the target molecules. Indeed, these were obtained with very high yields, and the separation was very efficient. A whole family of new compounds was obtained, having 6, 8 and 14 ethyleneglycol units and with mono- or diphytanyl lipid headgroups. This new pathway is a very promising synthetic strategy that can be used further in the development of new compounds of the tether system. The formation of bilayers was investigated for the different thiolipids mainly by using EIS. The electrical properties of a bilayer define the quality of the membrane and allow the study of the functionality of proteins embedded in such a system. Despite multiple trials to improve the system using self assembly, Langmuir Blodgett transfer, and detergent mixed vesicles, the new polymer thiolipids did not show as high electrical properties as tBLMs reported in the literature. Nevertheless, it was possible to show that a bilayer could be obtained for the different spacer lengths. These bilayers could be formed using self assembly for the first monolayer, and two different methods for bilayer formation, namely vesicle fusion and solvent exchange. We could furthermore show functional incorporation of the ion carrier valinomycin: the selective transport of K+ ions could be demonstrated. For DPHL, it was even possible to show the functional incorporation of the ion channel gramicidin. The influence of the spacer length is translated into an increase of the spacer capacitance, which could correspond to an increase in the capacity of charge accumulation in the submembrane space. The different systems need to be further optimised to improve the electrical properties of the bilayer. Moreover, the incorporation of larger proteins, and proteins bearing submembrane parts needs to be investigated.
Resumo:
This thesis presents a new method to explore the local mechanical properties such as bending modulus or surface tension of artificial and native pore-spanning membranes. Therefore the elastic response of a free-standing membrane to a local indentation by the means of atomic force microscopy is measured. Starting point are highly hexagonal ordered pores in alumina produced by electrochemical anodization of planar aluminium. The homogeneous pore radius can by tailored in the range of 10 nm up to 200 nm, but radius of 33 nm, 90 nm and 200 nm turned out to be best suited for investigation of the mechanical properties of pore-spanning native or artificial membranes. In this work artificial membrane systems consisting of DODAB as a bilayer in gel phase or DOTAP as a fluide membrane are spreaded by vesicle absorption on hexagonal structured pores after chemisorption of a 3-mercaptopropionic acid monolayer. Centrally indenting these nanodrums with an atomic force microscope tip yields force-indentation curves, which are quantitatively analyzed by solving the corresponding shape equations of continuum curvature elasticity. Since the measured response depends in a known way on the system geometry (pore size, tip radius) and on material parameters (bending modulus, lateral tension, adhesion), this opens the possibility to monitor local elastic properties of lipid membranes in a well-controlled setting. Additionally the locally distributed mechanical properties of pore-spanning artificial membranes are compared to those of native pore-spanning membranes. Therefore the basal membrane of MDCK II cells was prepared on porous alumina assays and their mechanical properties were analyzed by means of atomic force microscopy. Finally the elastic behavior such as the Young modulus of living MDCK II cells under various osmotic pressures is investigated. By changing the osmolarity in the extracellular region of MDCK II cells a volume change is induced according to hydration and dehydration of the cells, respectively. This volume change induces also a change in the elastic behavior of the cell, which is quantified by the means of force spectroscopy.
Resumo:
In order to synthesize proton-conducting materials which retain acids in the membrane during fuel cell operating conditions, the synthesis of poly(vinylphosphonic acid) grafted polybenzimidazole (PVPA grafted PBI) and the fabrication of multilayer membranes are mainly focussed in this dissertation. Synthesis of PVPA grafted PBI membrane can be done according to "grafting through" method. In "grafting through" method (or macromonomer method), monomer (e.g., vinylphosphonic acid) is radically copolymerized with olefin group attached macromonomer (e.g., allyl grafted PBI and vinylbenzyl grafted PBI). This approach is inherently limited to synthesize graft-copolymer with well-defined architectural and structural parameters. The incorporation of poly(vinylphosphonic acid) into PBI lead to improvements in proton conductivity up to 10-2 S/cm. Regarding multilayer membranes, the proton conducting layer-by-layer (LBL) assembly of polymers by various strong acids such as poly(vinylphosphonic acid), poly(vinylsulfonic acid) and poly(styrenesulfonic acid) paired with basic polymers such as poly(4-vinylimidazole) and poly(benzimidazole), which are appropriate for ‘Proton Exchange Membranes for Fuel Cell’ applications have been described. Proton conductivity increases with increasing smoothness of the film and the maximum measured conductivity was 10-4 S/cm at 25°C. Recently, anhydrous proton-conducting membranes with flexible structural backbones, which show proton-conducting properties comparable to Nafion have been focus of current research. The flexible backbone of polymer chains allow for a high segmental mobility and thus, a sufficiently low glass transition temperature (Tg), which is an essential factor to reach highly conductive systems. Among the polymers with a flexible chain backbone, poly(vinylphosphonic acid), poly(vinylbenzylphosphonic acid), poly(2-vinylbenzimidazole), poly(4-styrenesulfonic acid), poly(4-vinylimidazole), poly(4-vinylimidazole-co-vinylphosphonic acid) and poly(4-vinylimidazole-co-4-styrenesulfonic acid) are interesting materials for fuel cell applications. Synthesis of polybenzimidazole with anthracene structural unit was carried out in order to avoid modification reaction in the imidazole ring, because anthracene would encourage the modification reaction with an olefin by Diels-Alder reaction.
Resumo:
Vinylphosphonic acid (VPA) was polymerized at 80 ºC by free radical polymerization to give polymers (PVPA) of different molecular weight depending on the initiator concentration. The highest molecular weight, Mw, achieved was 6.2 x 104 g/mol as determined by static light scattering. High resolution nuclear magnetic resonance (NMR) spectroscopy was used to gain microstructure information about the polymer chain. Information based on tetrad probabilities was utilized to deduce an almost atactic configuration. In addition, 13C-NMR gave evidence for the presence of head-head and tail-tail links. Refined analysis of the 1H NMR spectra allowed for the quantitative determination of the fraction of these links (23.5 percent of all links). Experimental evidence suggested that the polymerization proceeded via cyclopolymerization of the vinylphosphonic acid anhydride as an intermediate. Titration curves indicated that high molecular weight poly(vinylphosphonic acid) PVPA behaved as a monoprotic acid. Proton conductors with phosphonic acid moieties as protogenic groups are promising due to their high charge carrier concentration, thermal stability, and oxidation resistivity. Blends and copolymers of PVPA have already been reported, but PVPA has not been characterized sufficiently with respect to its polymer properties. Therefore, we also studied the proton conductivity behaviour of a well-characterized PVPA. PVPA is a conductor; however, the conductivity depends strongly on the water content of the material. The phosphonic acid functionality in the resulting polymer, PVPA, undergoes condensation leading to the formation of phosphonic anhydride groups at elevated temperature. Anhydride formation was found to be temperature dependent by solid state NMR. Anhydride formation affects the proton conductivity to a large extent because not only the number of charge carriers but also the mobility of the charge carriers seems to change.
Resumo:
Tethered bilayer lipid membranes (tBLMs) are a promising model system for the natural cell membrane. They consist of a lipid bilayer that is covalently coupled to a solid support via a spacer group. In this study, we developed a suitable approach to increase the submembrane space in tBLMs. The challenge is to create a membrane with a lower lipid density in order to increase the membrane fluidity, but to avoid defects that might appear due to an increase in the lateral space within the tethered monolayers. Therefore, various synthetic strategies and different monolayer preparation techniques were examined. Synthetical attempts to achieve a large ion reservoir were made in two directions: increasing the spacer length of the tether lipids and increasing the lateral distribution of the lipids in the monolayer. The first resulted in the synthesis of a small library of tether lipids (DPTT, DPHT and DPOT) characterized by 1H and 13C NMR, FD-MS, ATR, DSC and TGA. The synthetic strategy for their preparation includes synthesis of precursor with a double bond anchor that can be easily modified for different substrates (e.g. metal and metaloxide). Here, the double bond was modified into a thiol group suitable for gold surface. Another approach towards the preparation of homogeneous monolayers with decreased two-dimensional packing density was the synthesis of two novel anchor lipids: DPHDL and DDPTT. DPHDL is “self-diluted” tether lipid containing two lipoic anchor moieties. DDPTT has an extended lipophylic part that should lead to the preparation of diluted, leakage free proximal layers that will facilitate the completion of the bilayer. Our tool-box of tether lipids was completed with two fluorescent labeled lipid precursors with respectively one and two phytanyl chains in the hydrophobic region and a dansyl group as a fluorophore. The use of such fluorescently marked lipids is supposed to give additional information for the lipid distribution on the air-water interface. The Langmuir film balance was used to investigate the monolayer properties of four of the synthesized thiolated anchor lipids. The packing density and mixing behaviour were examined. The results have shown that mixing anchor with free lipids can homogeneously dilute the anchor lipid monolayers. Moreover, an increase in the hydrophylicity (PEG chain length) of the anchor lipids leads to a higher packing density. A decrease in the temperature results in a similar trend. However, increasing the number of phytanyl chains per lipid molecule is shown to decrease the packing density. LB-monolayers based on pure and mixed lipids in different ratio and transfer pressure were tested to form tBLMs with diluted inner layers. A combination of the LB-monolayer transfer with the solvent exchange method accomplished successfully the formation of tBLMs based on pure DPOT. Some preliminary investigations of the electrical sealing properties and protein incorporation of self-assembled DPOT and DDPTT-based tBLMs were conducted. The bilayer formation performed by solvent exchange resulted in membranes with high resistances and low capacitances. The appearance of space beneath the membrane is clearly visible in the impedance spectra expressed by a second RC element. The latter brings the conclusion that the longer spacer in DPOT and the bigger lateral space between the DDPTT molecules in the investigated systems essentially influence the electrical parameters of the membrane. Finally, we could show the functional incorporation of the small ion carrier valinomycin in both types of membranes.
Resumo:
Physicochemical experimental techniques combined with the specificity of a biological recognition system have resulted in a variety of new analytical devices known as biosensors. Biosensors are under intensive development worldwide because they have many potential applications, e.g. in the fields of clinical diagnostics, food analysis, and environmental monitoring. Much effort is spent on the development of highly sensitive sensor platforms to study interactions on the molecular scale. In the first part, this thesis focuses on exploiting the biosensing application of nanoporous gold (NPG) membranes. NPG with randomly distributed nanopores (pore sizes less than 50 nm) will be discussed here. The NPG membrane shows unique plasmonic features, i.e. it supports both propagating and localized surface plasmon resonance modes (p SPR and l-SPR, respectively), both offering sensitive probing of the local refractive index variation on/in NPG. Surface refractive index sensors have an inherent advantage over fluorescence optical biosensors that require a chromophoric group or other luminescence label to transduce the binding event. In the second part, gold/silica composite inverse opals with macroporous structures were investigated with bio- or chemical sensing applications in mind. These samples combined the advantages of a larger available gold surface area with a regular and highly ordered grating structure. The signal of the plasmon was less noisy in these ordered substrate structures compared to the random pore structures of the NPG samples. In the third part of the thesis, surface plasmon resonance (SPR) spectroscopy was applied to probe the protein-protein interaction of the calcium binding protein centrin with the heterotrimeric G-protein transducin on a newly designed sensor platform. SPR spectroscopy was intended to elucidate how the binding of centrin to transducin is regulated towards understanding centrin functions in photoreceptor cells.
Resumo:
Mixed tethered bilayer lipid membranes (tBLMs) are described based on the self-assembly of a monolayer on template stripped gold, of an archea analogue thiolipid, 2,3-di-o-phytanyl-sn-glycerol-1-tetraethylene glycol-D,L--lipoic acid ester lipid (DPTL), and a newly designed dilution molecule, tetraethylene glycol-D,L--lipoic acid ester (TEGL). The usage of spacer and addition of extra dilution molecules between the substrate and the bilayer is that this architecture provides an ionic reservoir underneath the membrane, avoiding direct contact of the embedded membrane proteins with the gold electrodes and increasing the lateral diffusion of the bilayer, thus allowing for the incorporation of complex channels proteins which are failed in non-diluted systems. The tBLM is completed by fusion of liposomes made from a mixture of 1,2-diphythanolyl-sn-glycero-3-phosphocholine (DPhyPC), cholesterol, and 1,2-diphytanoyl-sn-Glycero-3-phosphate (DPhyPG) in a molar ratio of 6:3:1. Varying the mixing ratio, the optimum mixing ratio was obtained at a dilution factor of DPTL and TEGL at 90%:10%. Only under these conditions, the mixed tBLM showed electrical properties, as shown by EIS, which are comparable to a BLM. With higher dilution factors, a defect-free lipid bilayer was not formed. Formation of bilayers have been characterized by different techniques, such as surface plasmon resonance (SPR), electrochemical impedance spectroscopy (EIS), atomic force microscopy (AFM), and quartz crystal microbalance (QCM). Different proteins such as hemolysin, melittin, gramicidin, M2, Maxi-K, nAChR and bacteriohodopsin are incorporated into these tBLMs as shown by SPR and EIS studies. Ionic conductivity at 0 V vs. Ag|AgCl, 3M KCl were measured by EIS measurements. Our results indicate that these proteins have been successfully incorporated into a very stable tBLM environment in a functionally active form. Therefore, we conclude that the mixed tBLMs have been successfully designed as a general platform for biosensing and screening purposes of membrane proteins.
Resumo:
Membranen spielen eine essentielle Rolle bei vielen wichtigen zellulären Prozessen. Sie ermöglichen die Erzeugung von chemischen Gradienten zwischen dem Zellinneren und der Umgebung. Die Zellmembran übernimmt wesentliche Aufgaben bei der intra- und extrazellulären Signalweiterleitung und der Adhäsion an Oberflächen. Durch Prozesse wie Endozytose und Exozytose werden Stoffe in oder aus der Zelle transportiert, eingehüllt in Vesikel, welche aus der Zellmembran geformt werden. Zusätzlich bietet sie auch Schutz für das Zellinnere. Der Hauptbestandteil einer Zellmembran ist die Lipiddoppelschicht, eine zweidimensionale fluide Matrix mit einer heterogenen Zusammensetzung aus unterschiedlichen Lipiden. In dieser Matrix befinden sich weitere Bausteine, wie z.B. Proteine. An der Innenseite der Zelle ist die Membran über Ankerproteine an das Zytoskelett gekoppelt. Dieses Polymernetzwerk erhöht unter anderem die Stabilität, beeinflusst die Form der Zelle und übernimmt Funktionenrnbei der Zellbewegung. Zellmembranen sind keine homogenen Strukturen, je nach Funktion sind unterschiedliche Lipide und Proteine in mikrsokopischen Domänen angereichert.Um die grundlegenden mechanischen Eigenschaften der Zellmembran zu verstehen wurde im Rahmen dieser Arbeit das Modellsystem der porenüberspannenden Membranen verwendet.Die Entwicklung der porenüberspannenden Membranen ermöglicht die Untersuchung von mechanischen Eigenschaften von Membranen im mikro- bis nanoskopischen Bereich mit rasterkraftmikroskopischen Methoden. Hierbei bestimmen Porosität und Porengröße des Substrates die räumliche Auflösung, mit welcher die mechanischen Parameter untersucht werdenrnkönnen. Porenüberspannende Lipiddoppelschichten und Zellmembranen auf neuartigen porösen Siliziumsubstraten mit Porenradien von 225 nm bis 600 nm und Porositäten bis zu 30% wurden untersucht. Es wird ein Weg zu einer umfassenden theoretischen Modellierung der lokalen Indentationsexperimente und der Bestimmung der dominierenden energetischen Beiträge in der Mechanik von porenüberspannenden Membranen aufgezeigt. Porenüberspannende Membranen zeigen eine linear ansteigende Kraft mit zunehmender Indentationstiefe. Durch Untersuchung verschiedener Oberflächen, Porengrößen und Membranen unterschiedlicher Zusammensetzung war es für freistehende Lipiddoppelschichten möglich, den Einfluss der Oberflächeneigenschaften und Geometrie des Substrates, sowie der Membranphase und des Lösungsmittels auf die mechanischen Eigenschaften zu bestimmen. Es ist möglich, die experimentellen Daten mit einem theoretischen Modell zu beschreiben. Hierbei werden Parameter wie die laterale Spannung und das Biegemodul der Membran bestimmt. In Abhängigkeit der Substrateigenschaften wurden für freitragende Lipiddoppelschichten laterale Spannungen von 150 μN/m bis zu 31 mN/m gefunden für Biegemodulde zwischen 10^(−19) J bis 10^(−18) J. Durch Kraft-Indentations-Experimente an porenüberspannenden Zellmembranen wurde ein Vergleich zwischen dem Modell der freistehenden Lipiddoppelschichten und nativen Membranen herbeigeführt. Die lateralen Spannungen für native freitragende Membranen wurden zu 50 μN/m bestimmt. Weiterhin konnte der Einfluss des Zytoskeletts und der extrazellulä-rnren Matrix auf die mechanischen Eigenschaften bestimmt und innerhalb eines basolateralen Zellmembranfragments kartiert werden, wobei die Periodizität und der Porendurchmesser des Substrates das räumliche Auflösungsvermögen bestimmen. Durch Fixierung der freistehenden Zellmembran wurde das Biegemodul der Membran um bis zu einem Faktor 10 erhöht. Diese Arbeit zeigt wie lokal aufgelöste, mechanische Eigenschaften mittels des Modellsystems der porenüberspannenden Membranen gemessen und quantifiziert werden können. Weiterhin werden die dominierenden energetischen Einflüsse diskutiert, und eine Vergleichbarkeit zurnnatürlichen Membranen hergestellt.rn
Resumo:
Forschung über Membranenproteine stellt strenge Hindernisse, seit ruhigem gerade wenige Beispiele der Membranenproteinsorten sind gekennzeichnet worden in den verwendbaren experimentellen Plattformen gegenüber. Die Hauptherausforderung ist, ihre ausgezeichnete entworfene strukturelle Vollständigkeit zu konservieren, während die Ausdruck-, Lokalisierungs- und Wiederherstellungprozesse auftreten. In-vitro übersetzungssysteme können Vorteile über auf Zellenbasisgenausdruck zum Beispiel haben, wenn das über-ausgedrückte Produkt zur Wirtszelle giftig ist oder wenn fehlende Pfosten-Übersetzungsänderung in den bakteriellen Ausdrucksystemen die Funktionalität der Säugetier- Proteine oder Mangel an vorhandenem Membranenraum verdirbt, Funktionsausdruck verbieten.rn Der Nachahmer von biologische Membranen wie feste gestützte Lipidmembranen sind als Plattform am meisten benutzt, Proteinmembraneninteraktionen nachzuforschen. Wir sind in der Lage, Membranenproteinsorte, da wir eine Plattform für Membranenproteinsynthese vorstellen, nämlich die in-vitrosynthese der Membranenproteine in ein Peptid gestütztes Membranensystem zu adressieren. Die Wiederherstellung der Membranenproteine in den Lipid bilayers resultiert im Allgemeinen mit verschiedenen Proteinanpassungen. Als Alternative erforschen wir dieses System zum ersten Mal, um genaueres Modell zu den zellularen Membranen zu verursachen und ihre Funktion, wie Proteineinfügung, Proteinfunktion und Ligandinteraktionen nachzuahmen.rn In dieser Arbeit ist unser Ziel, komplizierte Transmembraneproteine, wie des Cytochrome bo3-ubiquinol Oxydase (Cyt-bo3) direkt innerhalb der biomimetic vorbildlichen Membrane zu synthetisieren. In unserem System wird festes gestütztes tBLM wie, P19/DMPE/PC als Plattform benutzt. Dieses künstliche Membranensystem mimiks die amphiphile Architektur eines Zelle-abgeleiteten Membranensystems.rn
Resumo:
Amphiphile Blockcopolymere sind in der Lage in Wasser Morphologien auszubilden, die analog sind zur hydrophil-hydrophob-hydrophil-Struktur von natürlichen Lipiddoppelschichten. In dieser Arbeit wird zum ersten Mal die Präparation und Charakterisierung von oberflächengestützten Polymerdoppelschichten aus Polybutadien-b-Polyethylenoxid (PB-PEO) beschrieben. Für die Herstellung dieser Strukturen wurden zwei unterschiedliche Präparationsstrategien verfolgt. Der erste Weg besteht aus einer zweistufigen Methode, bei der im ersten Schritt organisierte Monoschichten mittels Langmuir-Blodgett-Transfer auf Gold übertragen und kovalent angebunden werden. Im zweiten Schritt werden hydrophobe Wechselwirkungen ausgenutzt, um über Langmuir-Schaefer-Transfer eine weitere Schicht aufzubringen. Somit wurden homogene Architekturen erzeugt, die oberflächengestützten Lipiddoppelschichten gleichen. Als alternativer, einstufiger Ansatz zur Herstellung von Polymerdoppelschichten wurde das Spreiten von Polymervesikeln auf Gold verfolgt. Auch hierdurch ließen sich Doppelschichtstrukturen mit einer vollständigen Oberflächenbedeckung erzeugen. Die hergestellten Polymerdoppelschichten besitzen eine Dicke von 11-14 nm, die von der Präparationsmethode abhängt. Die Polymerstrukturen weisen bei Trocknung für 1.5 h eine Stabilität gegenüber Luft auf. Bei längeren Trocknungszeiten von ca. 12 h kommt es zu einer Reorganisation der Oberfläche. Dies deutet darauf hin, dass Wasser dazu notwendig ist die Strukturen auf lange Sicht zu stabilisieren. Um die Biokompatibilität der Polymerschichten nachzuweisen, wurden die Wechselwirkungen mit dem membranaktiven Peptid Polymyxin B und dem Transmembranprotein α-Haemolysin gezeigt. Mobilität ist ein wichtiger Faktor für die korrekte Funktion vieler Transmembranproteine. Um die laterale Diffusionsdynamik innerhalb der künstlichen Strukturen zu untersuchen, wurde die Mobilität eines integralen Modellpeptids und von fluoreszierenden Membransonden gemessen. Es konnte mit einzelmolekülempfindlichen Techniken gezeigt werden, dass das α-helikale Peptid und die kleinen Fluoreszenzfarbstoffe frei im hydrophoben Kern der Polymerdoppelschicht diffundieren können. Die Diffusion von beiden Spezies scheint stark von der Fluidität der Polymermatrix beeinflusst zu sein. Ein weiterer Teil dieser Arbeit widmet sich der Entwicklung eines angemessenen, lipidbasierten Referenzsystems für zukünftige Proteinuntersuchungen. Hierzu wurde eine neue Methode zu Herstellung von peptidgestützten Lipiddoppelschichtmembranen entwickelt. Dies wurde durch kovalente Befestigung eines Thiopeptids an einen Goldfilm und darauffolgende Anbindung eines Lipids erreicht. Zur Ausbildung der Lipiddoppelschicht auf dem Lipopeptidunterbau wurder der Rapid Solvent Exchange verwendet. Die Ausbildung der Lipiddoppelschicht wurde sowohl auf microskopischer als auch auf makroskopischer Ebene nachgewiesen. Im letzten Schritt wurde die Anwendbarkeit des Modelsystems für elektrochemische Messungen durch den funktionalen Einbau des Ionentransporters Valinomycin unter Beweis gestellt.
Resumo:
“Plasmon” is a synonym for collective oscillations of the conduction electrons in a metal nanoparticle (excited by an incoming light wave), which cause strong optical responses like efficient light scattering. The scattering cross-section with respect to the light wavelength depends not only on material, size and shape of the nanoparticle, but also on the refractive index of the embedding medium. For this reason, plasmonic nanoparticles are interesting candidates for sensing applications. Here, two novel setups for rapid spectral investigations of single nanoparticles and different sensing experiments are presented.rnrnPrecisely, the novel setups are based on an optical microscope operated in darkfield modus. For the fast single particle spectroscopy (fastSPS) setup, the entrance pinhole of a coupled spectrometer is replaced by a liquid crystal device (LCD) acting as spatially addressable electronic shutter. This improvement allows the automatic and continuous investigation of several particles in parallel for the first time. The second novel setup (RotPOL) usesrna rotating wedge-shaped polarizer and encodes the full polarization information of each particle within one image, which reveals the symmetry of the particles and their plasmon modes. Both setups are used to observe nanoparticle growth in situ on a single-particle level to extract quantitative data on nanoparticle growth.rnrnUsing the fastSPS setup, I investigate the membrane coating of gold nanorods in aqueous solution and show unequivocally the subsequent detection of protein binding to the membrane. This binding process leads to a spectral shift of the particles resonance due to the higher refractive index of the protein compared to water. Hence, the nanosized addressable sensor platform allows for local analysis of protein interactions with biological membranes as a function of the lateral composition of phase separated membranes.rnrnThe sensitivity on changes in the environmental refractive index depends on the particles’ aspect ratio. On the basis of simulations and experiments, I could present the existence of an optimal aspect ratio range between 3 and 4 for gold nanorods for sensing applications. A further sensitivity increase can only be reached by chemical modifications of the gold nanorods. This can be achieved by synthesizing an additional porous gold cage around the nanorods, resulting in a plasmon sensitivity raise of up to 50 % for those “nanorattles” compared to gold nanorods with the same resonance wavelength. Another possibility isrnto coat the gold nanorods with a thin silver shell. This reduces the single particle’s resonance spectral linewidth about 30 %, which enlarges the resolution of the observable shift. rnrnThis silver coating evokes the interesting effect of reducing the ensemble plasmon linewidth by changing the relation connecting particle shape and plasmon resonance wavelength. This change, I term plasmonic focusing, leads to less variation of resonance wavelengths for the same particle size distribution, which I show experimentally and theoretically.rnrnIn a system of two coupled nanoparticles, the plasmon modes of the transversal and longitudinal axis depend on the refractive index of the environmental solution, but only the latter one is influenced by the interparticle distance. I show that monitoring both modes provides a self-calibrating system, where interparticle distance variations and changes of the environmental refractive index can be determined with high precision.
Resumo:
Chromatography is the most widely used technique for high-resolution separation and analysis of proteins. This technique is very useful for the purification of delicate compounds, e.g. pharmaceuticals, because it is usually performed at milder conditions than separation processes typically used by chemical industry. This thesis focuses on affinity chromatography. Chromatographic processes are traditionally performed using columns packed with porous resin. However, these supports have several limitations, including the dependence on intra-particle diffusion, a slow mass transfer mechanism, for the transport of solute molecules to the binding sites within the pores and high pressure drop through the packed bed. These limitations can be overcome by using chromatographic supports like membranes or monoliths. Dye-ligands are considered important alternatives to natural ligands. Several reactive dyes, particularly Cibacron Blue F3GA, are used as affinity ligand for protein purification. Cibacron Blue F3GA is a triazine dye that interacts specifically and reversibly with albumin. The aim of this study is to prepare dye-affinity membranes and monoliths for efficient removal of albumin and to compare the three different affinity supports: membranes and monoliths and a commercial column HiTrapTM Blue HP, produced by GE Healthcare. A comparison among the three supports was performed in terms of binding capacity at saturation (DBC100%) and dynamic binding capacity at 10% breakthrough (DBC10%) using solutions of pure BSA. The results obtained show that the CB-RC membranes and CB-Epoxy monoliths can be compared to commercial support, column HiTrapTM Blue HP, for the separation of albumin. These results encourage a further characterization of the new supports examined.
Resumo:
Polymeric membranes represent a promising technology for gas separation processes, thanks to low costs, reduced energy consumption and limited waste production. The present thesis aims at studying the transport properties of two membrane materials, suitable for CO2 purification applications. In the first part, a polyimide, Matrimid 5218, has been throughout investigated, with particular reference to the effect of thermal treatment, aging and the presence of water vapor in the gas transport process. Permeability measurements showed that thermal history affects relevantly the diffusion of gas molecules across the membrane, influencing also the stability of the separation performances. Subsequently, the effect of water on Matrimid transport properties has been characterized for a wide set of incondensable penetrants. A monotonous reduction of permeability took place at increasing the water concentration within the polymer matrix, affecting the investigated gaseous species to the same extent, despite the different thermodynamic and kinetic features. In this view, a novel empirical model, based on the Free Volume Theory, has been proposed to qualitatively describe the phenomenon. Moreover, according to the accurate representation of the experimental data, the suggested approach has been combined with a more rigorous thermodynamic tool (NELF Model), allowing an exhaustive description of water influence on the single parameters contributing to the gas permeation across the membrane. In the second part, the study has focused on the synthesis and characterization of facilitated transport membranes, able to achieving outstanding separation performances thanks to the chemical enhancement of CO2 permeability. In particular, the transport properties have been investigated for high pressure CO2 separation applications and specific solutions have been proposed to solve stability issues, frequently arising under such severe conditions. Finally, the effect of different process parameters have been investigated, aiming at the identification of the optimal conditions capable to maximize the separation performance.