996 resultados para Plasmonic Nanoparticles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we demonstrate a micro-inkjet printing technique as a reproducible post-process for the deposition of carbon nanoparticles and fullerene adlayers onto fully CMOS compatible micro-electro-mechanical silicon-on-insulator infrared (IR) light sources to enhance their infrared emission. We show experimentally a significant increase in the infrared emission efficiency of the coated emitters. We numerically validate these findings with models suggesting a dominant performance increase for wavelengths <5.5 μm. Here, the bimodal size distribution in the diameter of the carbon nanoparticles, relative to the fullerenes, is an effective mediator towards topologically enhanced emittance of our miniaturised emitters. A 90% improvement in IR emission power density has been shown which we have rationalised with an increase in the mean thickness of the deposited carbon nanoparticle adlayer. © 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The on-demand availability of nanomaterials with selected size and well-defined chemical/physical properties is of fundamental importance for their widespread application. We report two clean, rapid, and non-destructive approaches for nanoparticle (NP) size selection in centrifugal fields. The first exploits rate zonal separation in a high viscosity gradient. The second exploits selective sedimentation of NPs with different sizes. These methods are here applied to metallic nanoparticles (MNPs) with different compositions and surface chemistry, dispersed either in water or organic solvents. The approach is general and can also be exploited for the separation of NPs of any material. We selectively sort both Au and AgNPs with sizes in the 10-30 nm range, achieving chemical-free MNPs with low polydispersivity. We do not use solutes, thus avoiding contamination, and only require low centrifugal fields, easily achievable in benchtop systems. © 2013 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove theoretically and experimentally the concept of polarization holography by producing visible diffraction through radiation emitted by plasmonic nanoantennas. We show a methodology to selectively activate the nanoantenna emission by controlling the orientation of the electric field of a beam. Additionally, we demonstrate that it is possible to superpose two independent transverse nanoantennas in the same plane without producing interference in their radiated field. Hence, we introduce an alternative view to the traditional concept of holography where fringes (or diffractive units) are band-limited to half the wavelength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasmonic enhanced Schottky detectors operating on the basis of the internal photoemission process are becoming an attractive choice for detecting photons with sub bandgap energy. Yet, the quantum efficiency of these detectors appears to be low compare to the more conventional detectors which are based on interband transitions in a semiconductor. Hereby we provide a theoretical model to predict the quantum efficiency of guided mode internal photoemission photodetector with focus on the platform of silicon plasmonics. The model is supported by numerical simulations and comparison to experimental results. Finally, we discuss approaches for further enhancement of the quantum efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Side by side with the great advantages of plasmonics in nanoscale light confinement, the inevitable ohmic loss results in significant joule heating in plasmonic devices. Therefore, understanding optical-induced heat generation and heat transport in integrated on-chip plasmonic devices is of major importance. Specifically, there is a need for in situ visualization of electromagnetic induced thermal energy distribution with high spatial resolution. This paper studies the heat distribution in silicon plasmonic nanotips. Light is coupled to the plasmonic nanotips from a silicon nanowaveguide that is integrated with the tip on chip. Heat is generated by light absorption in the metal surrounding the silicon nanotip. The steady-state thermal distribution is studied numerically and measured experimentally using the approach of scanning thermal microscopy. It is shown that following the nanoscale heat generation by a 10 mW light source within a silicon photonic waveguide the temperature in the region of the nanotip is increased by ∼ 15 °C compared with the ambient temperature. Furthermore, we also perform a numerical study of the dynamics of the heat transport. Given the nanoscale dimensions of the structure, significant heating is expected to occur within the time frame of picoseconds. The capability of measuring temperature distribution of plasmonic structures at the nanoscale is shown to be a powerful tool and may be used in future applications related to thermal plasmonic applications such as control heating of liquids, thermal photovoltaic, nanochemistry, medicine, heat-assisted magnetic memories, and nanolithography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We experimentally demonstrate for the first time a nanoscale resistive random access memory (RRAM) electronic device integrated with a plasmonic waveguide providing the functionality of optical readout. The device fabrication is based on silicon on insulator CMOS compatible approach of local oxidation of silicon, which enables the realization of RRAM and low optical loss channel photonic waveguide at the same fabrication step. This plasmonic device operates at telecom wavelength of 1.55 μm and can be used to optically read the logic state of a memory by measuring two distinct levels of optical transmission. The experimental characterization of the device shows optical bistable behavior between these levels of transmission in addition to well-defined hysteresis. We attribute the changes in the optical transmission to the creation of a nanoscale absorbing and scattering metallic filament in the amorphous silicon layer, where the plasmonic mode resides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The capability to focus electromagnetic energy at the nanoscale plays an important role in nanoscinece and nanotechnology. It allows enhancing light matter interactions at the nanoscale with applications related to nonlinear optics, light emission and light detection. It may also be used for enhancing resolution in microscopy, lithography and optical storage systems. Hereby we propose and experimentally demonstrate the nanoscale focusing of surface plasmons by constructing an integrated plasmonic/photonic on chip nanofocusing device in silicon platform. The device was tested directly by measuring the optical intensity along it using a near-field microscope. We found an order of magnitude enhancement of the intensity at the tip's apex. The spot size is estimated to be 50 nm. The demonstrated device may be used as a building block for "lab on a chip" systems and for enhancing light matter interactions at the apex of the tip.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We experimentally demonstrate the use of an on-chip integrated Schottky plasmonic detector for testing, monitoring and tapping signals in plasmonic and photonic devices. Theoretical model and measurement of external and integrated devices will be presented. © OSA 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We experimentally demonstrate nanoscale thermal mapping of light induced heat in photonic and plasmonic devices using a thermocouple AFM tip. Numerical simulations results and nanoscale temperature measurements are presented and discussed. © OSA 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We experimentally demonstrate the use of an on-chip integrated Schottky plasmonic detector for testing, monitoring and tapping signals in plasmonic and photonic devices. Theoretical model and measurement of external and integrated devices will be presented. © OSA 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the design, fabrication and characterization of plasmonic enhanced free space Schottky detector for telecom wavelength. Unique fabrication technique, simulation and measurement results will be presented and discussed. © OSA 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We experimentally demonstrate the use of an on-chip integrated Schottky plasmonic detector for testing, monitoring and tapping signals in plasmonic and photonic devices. Theoretical model and measurement of external and integrated devices will be presented. © OSA 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We experimentally demonstrate the planar focusing of Surface Plasmon Polaritons using space variant PMMA subwavelength features on top of a metallic film. Focusing is obtained by creating an effective graded refractive index profile. © 2012 OSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate an integrated on-chip plasmonic enhanced Schottky detector for telecom wavelengths based on the internal photoemission process. This CMOS compatible device may serve as a promising alternative to the Si-Ge detectors. © 2012 OSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the on-chip nanoscale focusing of surface plasmons in metallic nanotip coupled to the silicon waveguide. Strong field enhancement is observed at the apex of the tip. Enhancing light matter interactions is discussed. © 2012 OSA.