1000 resultados para Planetary Science
Resumo:
Spectropolarimetry of the Type Ib SN 2008D, associated with the X-ray Flash (XRF) 080109, at two separate epochs, is presented. The epochs of these observations correspond to V-band light curve maximum and 15 days after light curve maximum (or 21 and 36 days after the XRF). We find SN 2008D to be significantly polarized, although the largest contribution is due to the interstellar polarization component of Q ISP = 0% ± 0.1% and U ISP = -1.2% ± 0.1%. At the two epochs, the spectropolarimetry of SN 2008D is classified as being D1+L(He I)+L(Ca II). The intrinsic polarization of continuum wavelength regions is <0.4%, at both epochs, implying an asymmetry of the photosphere of <10%. Similar to other Type Ibc SNe, such as 2005bf, 2006aj, and 2007gr, we observed significant polarization corresponding to the spectral features of Ca II, He I, Mg I, Fe II and, possibly, O I ?7774, about a close-to-spherically symmetric photosphere. We introduce a new plot showing the chemically distinct line-forming regions in the ejecta and comment on the apparent ubiquity of highly polarized high-velocity Ca II features in Type Ibc SNe. The polarization angle of Ca II IR triplet was significantly different, at both epochs, to those of the other species, suggesting high-velocity Ca II forms in a separate part of the ejecta. The apparent structure in the outer layers of SN 2008D has implications for the interpretation of the early-time X-ray emission associated with shock breakout. We present two scenarios, within the jet-torus paradigm, which explain the lack of an apparent geometry discontinuity between the two observations: (1) a jet which punched a hole straight through the progenitor and deposited Ni outside the ejecta and (2) a jet which stalled inside the radius of the photosphere as observed at the second epoch. The lack of a peculiar polarization signature, suggesting strongly asymmetric excitation of the ejecta, and the reported properties of the shock-breakout favor the second scenario.
Resumo:
We present a compilation of the geometry measures acquired using optical and IR spectroscopy and optical spectropolarimetry to probe the explosion geometry of Type Ia supernovae (SNe Ia). Polarization measurements are sensitive to asymmetries in the plane of the sky, whereas line profiles in nebular phase spectra are expected to trace asymmetries perpendicular to the plane of the sky. The combination of these two measures can overcome their respective projection effects, completely probing the structures of these events. For nine normal SNe Ia, we find that the polarization of Si II ?6355 at 5 days before maximum (p Si II ) is well correlated with its velocity evolution (\dot{v}_Si II), implying that \dot{v}_Si II is predominantly due to the asymmetry of the SNe. We find only a weak correlation between the polarization of Si II and the reported velocities (v neb) for peak emission of optical Fe II and Ni II lines in nebular spectra. Our sample is biased, with polarization measurements being only available for normal SNe that subsequently exhibited positive (i.e., redshifted) v neb. In unison these indicators are consistent with an explosion in which the outer layers are dominated by a spherical oxygen layer, mixed with an asymmetric distribution of intermediate-mass elements. The combination of spectroscopic and spectropolarimetric indicators suggests a single geometric configuration for normal SNe Ia, with some of the diversity of observed properties arising from orientation effects.
Resumo:
We present the discovery of four new transiting hot jupiters, detected mainly from SuperWASP-North and SOPHIE observations. These new planets, WASP-52b, WASP-58b, WASP-59b, and WASP-60b, have orbital periods ranging from 1.7 to 7.9 days, masses between 0.46 and 0.94 M_Jup, and radii between 0.73 and 1.49 R_Jup. Their G1 to K5 dwarf host stars have V magnitudes in the range 11.7-13.0. The depths of the transits are between 0.6 and 2.7%, depending on the target. With their large radii, WASP-52b and 58b are new cases of low-density, inflated planets, whereas WASP-59b is likely to have a large, dense core. WASP-60 shows shallow transits. In the case of WASP-52 we also detected the Rossiter-McLaughlin anomaly via time-resolved spectroscopy of a transit. We measured the sky-projected obliquity lambda = 24 (+17/-9) degrees, indicating that WASP-52b orbits in the same direction as its host star is rotating and that this prograde orbit is slightly misaligned with the stellar equator. These four new planetary systems increase our statistics on hot jupiters, and provide new targets for follow-up studies.
Resumo:
Magnetic properties of eight particle size ranges from nine locations in Iceland and 26 locations in southern Greenland reveal the importance of source variation for our understanding of paleomagnetic and environmental magnetic records in the marine environment. These terrestrial samples show varying degrees of particle size dependence with all samples showing that the silt fraction possesses greater concentrations of ferrimagnetic minerals than either clay or sand. Fine pseudo-single domain (PSD) size magnetic grains dominate the magnetic assemblage of all Icelandic fractions. In contrast, Greenlandic samples possess greater variation in magnetic grain size; only fine silt and clay are as magnetically fine as the Icelandic PSD grains, while Greenlandic silts and sands are dominated by coarser PSD and multi-domain grains. These observations from potential marine sediment sources suggest that the silt size fraction is a likely driver for much of the concentration-dependent parameters derived from bulk magnetic records and that the magnetic grain size of the silt fraction can be used to discriminate between Icelandic and Greenlandic sources. Using these results to examine magnetic grain size records from marine sediment cores collected across the northern North Atlantic suggests that source, not just transport-controlled physical grain-size, has a significant impact on determining the magnetic grain size at a particular location. Homogeneity of magnetic grain size in Icelandic sediments at least partially explains the consistent quality of paleomagnetic records derived from cores surrounding Iceland and their ability to buffer large environmental changes. © 2013 Elsevier B.V.
Resumo:
The self-consistent interaction between energetic particles and self-generated hydromagnetic waves in a cosmic ray pressure dominated plasma is considered. Using a three-dimensional hybrid magnetohydrodynamics (MHD)-kinetic code, which utilizes a spherical harmonic expansion of the Vlasov-Fokker-Planck equation, high-resolution simulations of the magnetic field growth including feedback on the cosmic rays are carried out. It is found that for shocks with high cosmic ray acceleration efficiency, the magnetic fields become highly disorganized, resulting in near isotropic diffusion, independent of the initial orientation of the ambient magnetic field. The possibility of sub-Bohm diffusion is demonstrated for parallel shocks, while the diffusion coefficient approaches the Bohm limit from below for oblique shocks. This universal behaviour suggests that Bohm diffusion in the root-mean-squared field inferred from observation may provide a realistic estimate for the maximum energy acceleration time-scale in young supernova remnants. Although disordered, the magnetic field is not self-similar suggesting a non-uniform energy-dependent behaviour of the energetic particle transport in the precursor. Possible indirect radiative signatures of cosmic ray driven magnetic field amplification are discussed.
Resumo:
Bulk paleosol samples collected from a Middle to Early Miocene moraine in the New Mountain area of the Dry Valleys, Antarctica, yielded Coleoptera exoskeletons and occasional endoskeletons showing considerable diagenetic effects along with several species of bacteria, all lodged in a dry-frozen but salt-rich horizon at shallow depth to the land surface. The till is at the older end of a chronologic sequence of glacial deposits, thought to have been deposited before the transition from wet-based to cold-based ice (similar to 15 Ma), and hence, entirely weathered in contact with the subaerial atmosphere. It is possible, though not absolutely verifiable, that the skeletons date from this early stage of emplacement having undergone modifications whenever light snowmelt occurred or salt concentrations lowered the freezing temperature to maintain water as liquid. Correlation of the Coleoptera species with cultured bacteria in the sample and the likelihood of co-habitation with Beauveria bassiani found in two adjacent, although younger paleosols, leads to new questions about the antiquity of the Coleoptera and the source of N and glucose from chitinase derived from the insects. The skeletons in the 831 section may date close to the oldest preserved chitin (Oligocene) yet found on Earth. While harsh Martian conditions make it seemingly intolerable for complex, multicellular organisms such as insects to exist in the near-surface and subaerially, life within similar cold, dry paleosol microenvironments (Cryosols) of Antarctica point to life potential for the Red Planet, especially when considering the relatively diverse microbe (bacteria and fungi) population. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We obtained high-resolution, high-contrast optical imaging in the Sloan Digital Sky Survey i′ band with the LuckyCam camera mounted on the 2.56 m Nordic Optical Telescope, to search for faint stellar companions to 16 stars harbouring transiting exoplanets. The Lucky imaging technique uses very short exposures to obtain near diffraction-limited images yielding sub-arcsecond sensitivity, allowing us to search for faint stellar companions within the seeing disc of the primary planet host. Here, we report the detection of two candidate stellar companions to the planet host TrES-1 at separations <6.5 arcsec and we confirm stellar companions to CoRoT-2, CoRoT-3, TrES-2, TrES-4 and HAT-P-7 already known in the literature. We do not confirm the candidate companions to HAT-P-8 found via Lucky imaging by Bergfors et al., however, most probably because HAT-P-8 was observed in poor seeing conditions. Our detection sensitivity limits allow us to place constraints on the spectral types and masses of the putative bound companions to the planet host stars in our sample. If bound, the stellar companions identified in this work would provide stringent observational constraints to models of planet formation and evolution. In addition, these companions could affect the derived physical properties of the exoplanets in these systems.
Resumo:
If recurrent novae are progenitors of Type Ia supernovae, their white dwarfs must have masses close to the Chandrasekhar limit. The most reliable means of determining white dwarf masses in recurrent novae is dynamically, via radial-velocity and rotational-broadening measurements of the companion star. Such measurements require the system to be both eclipsing and to show absorption features from the secondary star. Prior to the work reported here, the only dynamical mass estimate of a recurrent nova was for U Sco, which has a white dwarf mass of 1.55 +/- 0.24 Msolar (Thoroughgood et al. 2001). We present new time-resolved, intermediate-resolution spectroscopy of the eclipsing recurrent nova CI Aquilae (CI Aql) during quiescence. We find the mass of the white dwarf to be 1.00 +/- 0.14 Msolar and the mass of the secondary star to be 2.32 +/- 0.19 Msolar. We estimate the radius of the secondary to be 2.07 +/- 0.06 Rsolar, implying that it is a slightly-evolved early A-type star. The high mass ratio of q = 2.35 +/- 0.24 and the high secondary-star mass implies that the mass transfer occurs on a thermal timescale. We suggest that CI Aql is rapidly evolving into a supersoft X-ray source, and ultimately may explode as a Type Ia supernova within 10 Myr.
Resumo:
We report the discovery of two transiting hot Jupiters, WASP-65b (Mpl = 1.55 ± 0.16 MJ; Rpl = 1.11 ± 0.06 RJ), and WASP-75b (Mpl = 1.07 ± 0.05 MJ; Rpl = 1.27 ± 0.05 RJ). They orbit their host star every ∼2.311, and ∼2.484 days, respectively. The planet host WASP-65 is a G6 star (Teff = 5600 K, [Fe/H] = −0.07 ± 0.07, age 8 Gyr); WASP-75 is an F9 star (Teff = 6100 K, [Fe/H] = 0.07 ± 0.09, age ∼ 3 Gyr). WASP-65b is one of the densest known exoplanets in the mass range 0.1 and 2.0 MJ (ρpl = 1.13 ± 0.08 ρJ), a mass range where a large fraction of planets are found to be inflated with respect to theoretical planet models. WASP-65b is one of only a handful of planets with masses of ∼1.5 MJ, a mass regime surprisingly underrepresented among the currently known hot Jupiters. The radius of WASP-75b is slightly inflated (10%) as compared to theoretical planet models with no core, and has a density similar to that of Saturn (ρpl = 0.52 ± 0.06 ρJ). Key words. planetary systems – stars: individual:
Resumo:
We present observations of the Type Ic supernova (SN Ic) 2011bm spanning a period of about one year. The data establish that SN 2011bm is a spectroscopically normal SN Ic with moderately low ejecta velocities and with a very slow spectroscopic and photometric evolution (more than twice as slow as SN 1998bw). The Pan-STARRS1 retrospective detection shows that the rise time from explosion to peak was 40 days in the R band. Through an analysis of the light curve and the spectral sequence, we estimate a kinetic energy of 7-17 foe and a total ejected mass of 7-17 Mo, 5-10 Mo of which is oxygen and 0.6-0.7 Mo is 56Ni. The physical parameters obtained for SN 2011bm suggest that its progenitor was a massive star of initial mass 30-50 Mo. The profile of the forbidden oxygen lines in the nebular spectra show no evidence of a bi-polar geometry in the ejected material.
Resumo:
A set of hydrodynamical models based on stellar evolutionary progenitors is used to study the nature of SN 2011dh. Our modeling suggests that a large progenitor star ---with R ~200 Rsun---, is needed to reproduce the early light curve of SN 2011dh. This is consistent with the suggestion that the yellow super-giant star detected at the location of the SN in deep pre-explosion images is the progenitor star. From the main peak of the bolometric light curve and expansion velocities we constrain the mass of the ejecta to be ~2 Msun, the explosion energy to be E= 6-10 x 10^50 erg, and the 56Ni mass to be approximately 0.06 Msun. The progenitor star was composed of a helium core of 3 to 4 Msun and a thin hydrogen-rich envelope of ~0.1 M_sun with a main sequence mass estimated to be in the range of 12--15 Msun. Our models rule out progenitors with helium-core masses larger than 8 Msun, which correspond to M_ZAMS > 25 Msun. This suggests that a single star evolutionary scenario for SN 2011dh is unlikely.
Resumo:
Super-luminous supernovae have a tendency to occur in faint host galaxies which are likely to have low mass and low metallicity. While these extremely luminous explosions have been observed from z=0.1 to 1.55, the closest explosions allow more detailed investigations of their host galaxies. We present a detailed analysis of the host galaxy of SN 2010gx (z=0.23), one of the best studied super-luminous type Ic supernovae. The host is a dwarf galaxy (M_g=-17.42+/-0.17) with a high specific star formation rate. It has a remarkably low metallicity of 12+log(O/H)=7.5+/-0.1 dex as determined from the detection of the [OIII] 4363 Angs line. This is the first reliable metallicity determination of a super-luminous stripped-envelope supernova host. We collected deep multi-epoch imaging with Gemini + GMOS between 240-560 days after explosion to search for any sign of radioactive nickel-56, which might provide further insights on the explosion mechanism and the progenitor's nature. We reach griz magnitudes of m_AB~26, but do not detect SN 2010gx at these epochs. The limit implies that any nickel-56 production was similar to or below that of SN 1998bw (a luminous type Ic SN that produced around 0.4 M_sun of nickel-56). The low volumetric rates of these supernovae (~10^-4 of the core-collapse population) could be qualitatively matched if the explosion mechanism requires a combination of low-metallicity (below 0.2 Z_sun), high progenitor mass (>60 M_sun) and high rotation rate (fastest 10% of rotators).
Resumo:
We use natural seeing imaging of SN 2013ej in M74 to identify a progenitor candidate in archival Hubble Space Telescope (HST) + Advanced Camera for Survey images. We find a source coincident with the supernova (SN) in the F814W filter within the total 75 mas (~3 pc astrometric uncertainty; however, the position of the progenitor candidate in contemporaneous F435W and F555W filters is significantly offset. We conclude that the 'progenitor candidate' is in fact two physically unrelated sources; a blue source which is likely unrelated to the SN, and a red source which we suggest exploded as SN 2013ej. Deep images with the same instrument on board HST taken when the SN has faded (in approximately two year's time) will allow us to accurately characterize the unrelated neighbouring source and hence determine the intrinsic flux of the progenitor in three filters.We suggest that the F814W flux is dominated by the progenitor of SN 2013ej, and assuming a bolometric correction appropriate to an M-type supergiant, we estimate that the mass of the progenitor of SN 2013ej was between 8 and 15.5M⊙.
Resumo:
We cross match the GALEX and Kepler surveys to create a unique dataset with both ultraviolet (UV) measurements and highly precise photometric variability measurements in the visible light spectrum. As stellar activity is driven by magnetic field modulations, we have used UV emission from the magnetically heated gas in the stellar atmosphere to serve as our proxy for the more well-known stellar activity indicator, R' HK . The R' HK approximations were in turn used to estimate the level of astrophysical noise expected in radial velocity (RV) measurements and these were then searched for correlations with photometric variability. We find significant scatter in our attempts to estimate RV noise for magnetically active stars, which we attribute to variations in the phase and strength of the stellar magnetic cycle that drives the activity of these targets. However, for stars we deem to be magnetically quiet, we do find a clear correlation between photometric variability and estimated levels of RV noise (with variability up to ~10 m s–1). We conclude that for these quiet stars, we can use photometric measurements as a proxy to estimate the RV noise expected. As a result, the procedure outlined in this paper may help select targets best-suited for RV follow-up necessary for planet confirmation.
Resumo:
The maximum energy to which cosmic rays can be accelerated at weakly magnetised ultra-relativistic shocks is investigated. We demonstrate that for such shocks, in which the scattering of energetic particles is mediated exclusively by ion skin-depth scale structures, as might be expected for a Weibel-mediated shock, there is an intrinsic limit on the maximum energy to which particles can be accelerated. This maximum energy is determined from the requirement that particles must be isotropized in the downstream plasma frame before the mean field transports them far downstream, and falls considerably short of what is required to produce ultra-high-energy cosmic rays. To circumvent this limit, a highly disorganized field is required on larger scales. The growth of cosmic ray-induced instabilities on wavelengths much longer than the ion-plasma skin depth, both upstream and downstream of the shock, is considered. While these instabilities may play an important role in magnetic field amplification at relativistic shocks, on scales comparable to the gyroradius of the most energetic particles, the calculated growth rates have insufficient time to modify the scattering. Since strong modification is a necessary condition for particles in the downstream region to re-cross the shock, in the absence of an alternative scattering mechanism, these results imply that acceleration to higher energies is ruled out. If weakly magnetized ultra-relativistic shocks are disfavoured as high-energy particle accelerators in general, the search for potential sources of ultra-high-energy cosmic rays can be narrowed.