879 resultados para Physics Based Modeling
Resumo:
We present a model that allows for the derivation of the experimentally accesible observables: spatial steps, mean velocity, stall force, useful power, efficiency and randomness, etc. as a function of the [adenosine triphosphate] concentration and an external load F. The model presents a minimum of adjustable parameters and the theoretical predictions compare well with the available experimental results.
Resumo:
Toxicokinetic modeling is a useful tool to describe or predict the behavior of a chemical agent in the human or animal organism. A general model based on four compartments was developed in a previous study in order to quantify the effect of human variability on a wide range of biological exposure indicators. The aim of this study was to adapt this existing general toxicokinetic model to three organic solvents, which were methyl ethyl ketone, 1-methoxy-2-propanol and 1,1,1,-trichloroethane, and to take into account sex differences. We assessed in a previous human volunteer study the impact of sex on different biomarkers of exposure corresponding to the three organic solvents mentioned above. Results from that study suggested that not only physiological differences between men and women but also differences due to sex hormones levels could influence the toxicokinetics of the solvents. In fact the use of hormonal contraceptive had an effect on the urinary levels of several biomarkers, suggesting that exogenous sex hormones could influence CYP2E1 enzyme activity. These experimental data were used to calibrate the toxicokinetic models developed in this study. Our results showed that it was possible to use an existing general toxicokinetic model for other compounds. In fact, most of the simulation results showed good agreement with the experimental data obtained for the studied solvents, with a percentage of model predictions that lies within the 95% confidence interval varying from 44.4 to 90%. Results pointed out that for same exposure conditions, men and women can show important differences in urinary levels of biological indicators of exposure. Moreover, when running the models by simulating industrial working conditions, these differences could even be more pronounced. In conclusion, a general and simple toxicokinetic model, adapted for three well known organic solvents, allowed us to show that metabolic parameters can have an important impact on the urinary levels of the corresponding biomarkers. These observations give evidence of an interindividual variablity, an aspect that should have its place in the approaches for setting limits of occupational exposure.
Resumo:
With the advancement of high-throughput sequencing and dramatic increase of available genetic data, statistical modeling has become an essential part in the field of molecular evolution. Statistical modeling results in many interesting discoveries in the field, from detection of highly conserved or diverse regions in a genome to phylogenetic inference of species evolutionary history Among different types of genome sequences, protein coding regions are particularly interesting due to their impact on proteins. The building blocks of proteins, i.e. amino acids, are coded by triples of nucleotides, known as codons. Accordingly, studying the evolution of codons leads to fundamental understanding of how proteins function and evolve. The current codon models can be classified into three principal groups: mechanistic codon models, empirical codon models and hybrid ones. The mechanistic models grasp particular attention due to clarity of their underlying biological assumptions and parameters. However, they suffer from simplified assumptions that are required to overcome the burden of computational complexity. The main assumptions applied to the current mechanistic codon models are (a) double and triple substitutions of nucleotides within codons are negligible, (b) there is no mutation variation among nucleotides of a single codon and (c) assuming HKY nucleotide model is sufficient to capture essence of transition- transversion rates at nucleotide level. In this thesis, I develop a framework of mechanistic codon models, named KCM-based model family framework, based on holding or relaxing the mentioned assumptions. Accordingly, eight different models are proposed from eight combinations of holding or relaxing the assumptions from the simplest one that holds all the assumptions to the most general one that relaxes all of them. The models derived from the proposed framework allow me to investigate the biological plausibility of the three simplified assumptions on real data sets as well as finding the best model that is aligned with the underlying characteristics of the data sets. -- Avec l'avancement de séquençage à haut débit et l'augmentation dramatique des données géné¬tiques disponibles, la modélisation statistique est devenue un élément essentiel dans le domaine dé l'évolution moléculaire. Les résultats de la modélisation statistique dans de nombreuses découvertes intéressantes dans le domaine de la détection, de régions hautement conservées ou diverses dans un génome de l'inférence phylogénétique des espèces histoire évolutive. Parmi les différents types de séquences du génome, les régions codantes de protéines sont particulièrement intéressants en raison de leur impact sur les protéines. Les blocs de construction des protéines, à savoir les acides aminés, sont codés par des triplets de nucléotides, appelés codons. Par conséquent, l'étude de l'évolution des codons mène à la compréhension fondamentale de la façon dont les protéines fonctionnent et évoluent. Les modèles de codons actuels peuvent être classés en trois groupes principaux : les modèles de codons mécanistes, les modèles de codons empiriques et les hybrides. Les modèles mécanistes saisir une attention particulière en raison de la clarté de leurs hypothèses et les paramètres biologiques sous-jacents. Cependant, ils souffrent d'hypothèses simplificatrices qui permettent de surmonter le fardeau de la complexité des calculs. Les principales hypothèses retenues pour les modèles actuels de codons mécanistes sont : a) substitutions doubles et triples de nucleotides dans les codons sont négligeables, b) il n'y a pas de variation de la mutation chez les nucléotides d'un codon unique, et c) en supposant modèle nucléotidique HKY est suffisant pour capturer l'essence de taux de transition transversion au niveau nucléotidique. Dans cette thèse, je poursuis deux objectifs principaux. Le premier objectif est de développer un cadre de modèles de codons mécanistes, nommé cadre KCM-based model family, sur la base de la détention ou de l'assouplissement des hypothèses mentionnées. En conséquence, huit modèles différents sont proposés à partir de huit combinaisons de la détention ou l'assouplissement des hypothèses de la plus simple qui détient toutes les hypothèses à la plus générale qui détend tous. Les modèles dérivés du cadre proposé nous permettent d'enquêter sur la plausibilité biologique des trois hypothèses simplificatrices sur des données réelles ainsi que de trouver le meilleur modèle qui est aligné avec les caractéristiques sous-jacentes des jeux de données. Nos expériences montrent que, dans aucun des jeux de données réelles, tenant les trois hypothèses mentionnées est réaliste. Cela signifie en utilisant des modèles simples qui détiennent ces hypothèses peuvent être trompeuses et les résultats de l'estimation inexacte des paramètres. Le deuxième objectif est de développer un modèle mécaniste de codon généralisée qui détend les trois hypothèses simplificatrices, tandis que d'informatique efficace, en utilisant une opération de matrice appelée produit de Kronecker. Nos expériences montrent que sur un jeux de données choisis au hasard, le modèle proposé de codon mécaniste généralisée surpasse autre modèle de codon par rapport à AICc métrique dans environ la moitié des ensembles de données. En outre, je montre à travers plusieurs expériences que le modèle général proposé est biologiquement plausible.
Resumo:
Modeling concentration-response function became extremely popular in ecotoxicology during the last decade. Indeed, modeling allows determining the total response pattern of a given substance. However, reliable modeling is consuming in term of data, which is in contradiction with the current trend in ecotoxicology, which aims to reduce, for cost and ethical reasons, the number of data produced during an experiment. It is therefore crucial to determine experimental design in a cost-effective manner. In this paper, we propose to use the theory of locally D-optimal designs to determine the set of concentrations to be tested so that the parameters of the concentration-response function can be estimated with high precision. We illustrated this approach by determining the locally D-optimal designs to estimate the toxicity of the herbicide dinoseb on daphnids and algae. The results show that the number of concentrations to be tested is often equal to the number of parameters and often related to the their meaning, i.e. they are located close to the parameters. Furthermore, the results show that the locally D-optimal design often has the minimal number of support points and is not much sensitive to small changes in nominal values of the parameters. In order to reduce the experimental cost and the use of test organisms, especially in case of long-term studies, reliable nominal values may therefore be fixed based on prior knowledge and literature research instead of on preliminary experiments
Resumo:
Soil infiltration is a key link of the natural water cycle process. Studies on soil permeability are conducive for water resources assessment and estimation, runoff regulation and management, soil erosion modeling, nonpoint and point source pollution of farmland, among other aspects. The unequal influence of rainfall duration, rainfall intensity, antecedent soil moisture, vegetation cover, vegetation type, and slope gradient on soil cumulative infiltration was studied under simulated rainfall and different underlying surfaces. We established a six factor-model of soil cumulative infiltration by the improved back propagation (BP)-based artificial neural network algorithm with a momentum term and self-adjusting learning rate. Compared to the multiple nonlinear regression method, the stability and accuracy of the improved BP algorithm was better. Based on the improved BP model, the sensitive index of these six factors on soil cumulative infiltration was investigated. Secondly, the grey relational analysis method was used to individually study grey correlations among these six factors and soil cumulative infiltration. The results of the two methods were very similar. Rainfall duration was the most influential factor, followed by vegetation cover, vegetation type, rainfall intensity and antecedent soil moisture. The effect of slope gradient on soil cumulative infiltration was not significant.
Resumo:
Although ab initio calculations of relativistic Brueckner theory lead to large scalar isovector fields in nuclear matter, at present, successful versions of covariant density functional theory neglect the interactions in this channel. A new high-precision density functional DD-MEδ is presented which includes four mesons, σ, ω, δ, and ρ, with density-dependent meson-nucleon couplings. It is based to a large extent on microscopic ab initiocalculations in nuclear matter. Only four of its parameters are determined by adjusting to binding energies and charge radii of finite nuclei. The other parameters, in particular the density dependence of the meson-nucleon vertices, are adjusted to nonrelativistic and relativistic Brueckner calculations of symmetric and asymmetric nuclear matter. The isovector effective mass mp*−mn* derived from relativistic Brueckner theory is used to determine the coupling strength of the δ meson and its density dependence.
Resumo:
We report on the growth of thin films and heterostructures of the ferromagnetic-insulating perovskite La0.1Bi0.9MnO3. We show that the La0.1Bi0.9MnO3 perovskite grows single phased, epitaxially, and with a single out-of-plane orientation either on SrTiO3 substrates or onto strained La2/3Sr1/3MnO3 and SrRuO3 ferromagnetic-metallic buffer layers. We discuss the magnetic properties of the La0.1Bi0.9MnO3 films and heterostructures in view of their possible potential as magnetoelectric or spin-dependent tunneling devices.
Resumo:
Modeling of water movement in non-saturated soil usually requires a large number of parameters and variables, such as initial soil water content, saturated water content and saturated hydraulic conductivity, which can be assessed relatively easily. Dimensional flow of water in the soil is usually modeled by a nonlinear partial differential equation, known as the Richards equation. Since this equation cannot be solved analytically in certain cases, one way to approach its solution is by numerical algorithms. The success of numerical models in describing the dynamics of water in the soil is closely related to the accuracy with which the water-physical parameters are determined. That has been a big challenge in the use of numerical models because these parameters are generally difficult to determine since they present great spatial variability in the soil. Therefore, it is necessary to develop and use methods that properly incorporate the uncertainties inherent to water displacement in soils. In this paper, a model based on fuzzy logic is used as an alternative to describe water flow in the vadose zone. This fuzzy model was developed to simulate the displacement of water in a non-vegetated crop soil during the period called the emergency phase. The principle of this model consists of a Mamdani fuzzy rule-based system in which the rules are based on the moisture content of adjacent soil layers. The performances of the results modeled by the fuzzy system were evaluated by the evolution of moisture profiles over time as compared to those obtained in the field. The results obtained through use of the fuzzy model provided satisfactory reproduction of soil moisture profiles.
Resumo:
This thesis is a compilation of projects to study sediment processes recharging debris flow channels. These works, conducted during my stay at the University of Lausanne, focus in the geological and morphological implications of torrent catchments to characterize debris supply, a fundamental element to predict debris flows. Other aspects of sediment dynamics are considered, e.g. the coupling headwaters - torrent, as well as the development of a modeling software that simulates sediment transfer in torrent systems. The sediment activity at Manival, an active torrent system of the northern French Alps, was investigated using terrestrial laser scanning and supplemented with geostructural investigations and a survey of sediment transferred in the main torrent. A full year of sediment flux could be observed, which coincided with two debris flows and several bedload transport events. This study revealed that both debris flows generated in the torrent and were preceded in time by recharge of material from the headwaters. Debris production occurred mostly during winter - early spring time and was caused by large slope failures. Sediment transfers were more puzzling, occurring almost exclusively in early spring subordinated to runoffconditions and in autumn during long rainfall. Intense rainstorms in summer did not affect debris storage that seems to rely on the stability of debris deposits. The morpho-geological implication in debris supply was evaluated using DEM and field surveys. A slope angle-based classification of topography could characterize the mode of debris production and transfer. A slope stability analysis derived from the structures in rock mass could assess susceptibility to failure. The modeled rockfall source areas included more than 97% of the recorded events and the sediment budgets appeared to be correlated to the density of potential slope failure. This work showed that the analysis of process-related terrain morphology and of susceptibility to slope failure document the sediment dynamics to quantitatively assess erosion zones leading to debris flow activity. The development of erosional landforms was evaluated by analyzing their geometry with the orientations of potential rock slope failure and with the direction of the maximum joint frequency. Structure in rock mass, but in particular wedge failure and the dominant discontinuities, appear as a first-order control of erosional mechanisms affecting bedrock- dominated catchment. They represent some weaknesses that are exploited primarily by mass wasting processes and erosion, promoting not only the initiation of rock couloirs and gullies, but also their propagation. Incorporating the geological control in geomorphic processes contributes to better understand the landscape evolution of active catchments. A sediment flux algorithm was implemented in a sediment cascade model that discretizes the torrent catchment in channel reaches and individual process-response systems. Each conceptual element includes in simple manner geomorphological and sediment flux information derived from GIS complemented with field mapping. This tool enables to simulate sediment transfers in channels considering evolving debris supply and conveyance, and helps reducing the uncertainty inherent to sediment budget prediction in torrent systems. Cette thèse est un recueil de projets d'études des processus de recharges sédimentaires des chenaux torrentiels. Ces travaux, réalisés lorsque j'étais employé à l'Université de Lausanne, se concentrent sur les implications géologiques et morphologiques des bassins dans l'apport de sédiments, élément fondamental dans la prédiction de laves torrentielles. D'autres aspects de dynamique sédimentaire ont été abordés, p. ex. le couplage torrent - bassin, ainsi qu'un modèle de simulation du transfert sédimentaire en milieu torrentiel. L'activité sédimentaire du Manival, un système torrentiel actif des Alpes françaises, a été étudiée par relevés au laser scanner terrestre et complétée par une étude géostructurale ainsi qu'un suivi du transfert en sédiments du torrent. Une année de flux sédimentaire a pu être observée, coïncidant avec deux laves torrentielles et plusieurs phénomènes de charriages. Cette étude a révélé que les laves s'étaient générées dans le torrent et étaient précédées par une recharge de débris depuis les versants. La production de débris s'est passée principalement en l'hiver - début du printemps, causée par de grandes ruptures de pentes. Le transfert était plus étrange, se produisant presque exclusivement au début du printemps subordonné aux conditions d'écoulement et en automne lors de longues pluies. Les orages d'été n'affectèrent guère les dépôts, qui semblent dépendre de leur stabilité. Les implications morpho-géologiques dans l'apport sédimentaire ont été évaluées à l'aide de MNT et études de terrain. Une classification de la topographie basée sur la pente a permis de charactériser le mode de production et transfert. Une analyse de stabilité de pente à partir des structures de roches a permis d'estimer la susceptibilité à la rupture. Les zones sources modélisées comprennent plus de 97% des chutes de blocs observées et les bilans sédimentaires sont corrélés à la densité de ruptures potentielles. Ce travail d'analyses des morphologies du terrain et de susceptibilité à la rupture documente la dynamique sédimentaire pour l'estimation quantitative des zones érosives induisant l'activité torrentielle. Le développement des formes d'érosion a été évalué par l'analyse de leur géométrie avec celle des ruptures potentielles et avec la direction de la fréquence maximale des joints. Les structures de roches, mais en particulier les dièdres et les discontinuités dominantes, semblent être très influents dans les mécanismes d'érosion affectant les bassins rocheux. Ils représentent des zones de faiblesse exploitées en priorité par les processus de démantèlement et d'érosion, encourageant l'initiation de ravines et couloirs, mais aussi leur propagation. L'incorporation du control géologique dans les processus de surface contribue à une meilleure compréhension de l'évolution topographique de bassins actifs. Un algorithme de flux sédimentaire a été implémenté dans un modèle en cascade, lequel divise le bassin en biefs et en systèmes individuels répondant aux processus. Chaque unité inclut de façon simple les informations géomorpologiques et celles du flux sédimentaire dérivées à partir de SIG et de cartographie de terrain. Cet outil permet la simulation des transferts de masse dans les chenaux, considérants la variabilité de l'apport et son transport, et aide à réduire l'incertitude liée à la prédiction de bilans sédimentaires torrentiels. Ce travail vise très humblement d'éclairer quelques aspects de la dynamique sédimentaire en milieu torrentiel.
Resumo:
A stochastic nonlinear partial differential equation is constructed for two different models exhibiting self-organized criticality: the Bak-Tang-Wiesenfeld (BTW) sandpile model [Phys. Rev. Lett. 59, 381 (1987); Phys. Rev. A 38, 364 (1988)] and the Zhang model [Phys. Rev. Lett. 63, 470 (1989)]. The dynamic renormalization group (DRG) enables one to compute the critical exponents. However, the nontrivial stable fixed point of the DRG transformation is unreachable for the original parameters of the models. We introduce an alternative regularization of the step function involved in the threshold condition, which breaks the symmetry of the BTW model. Although the symmetry properties of the two models are different, it is shown that they both belong to the same universality class. In this case the DRG procedure leads to a symmetric behavior for both models, restoring the broken symmetry, and makes accessible the nontrivial fixed point. This technique could also be applied to other problems with threshold dynamics.
Resumo:
Melon is one of the most demanding cucurbits regarding fertilization, requiring knowledge of soils, crop nutritional requirements, time of application, and nutrient use efficiency for proper fertilization. Developing support systems for decision-making for fertilization that considers these variables in nutrient requirement and supply is necessary. The objective of this study was parameterization of a fertilizer recommendation system for melon (Ferticalc-melon) based on nutritional balance. To estimate fertilizer recommendation, the system considers the requirement subsystem (REQ), which includes the demand for nutrients by the plant, and the supply subsystem (SUP), which corresponds to the supply of nutrients through the soil and irrigation water. After determining the REQtotal and SUPtotal, the system calculates the nutrient balances for N, P, K, Ca, Mg, and S, recommending fertilizer application if the balance is negative (SUP < REQ), but not if the balance is positive or zero (SUP ≥ REQ). Simulations were made for different melon types (Yellow, Cantaloupe, Galia and Piel-de-sapo), with expected yield of 45 t ha-1. The system estimated that Galia type was the least demanding in P, while Piel-de-sapo was the most demanding. Cantaloupe was the least demanding for N and Ca, while the Yellow type required less K, Mg, and S. As compared to other fertilizer recommendation methods adopted in Brazil, the Ferticalc system was more dynamic and flexible. Although the system has shown satisfactory results, it needs to be evaluated under field conditions to improve its recommendations.
Resumo:
Photon migration in a turbid medium has been modeled in many different ways. The motivation for such modeling is based on technology that can be used to probe potentially diagnostic optical properties of biological tissue. Surprisingly, one of the more effective models is also one of the simplest. It is based on statistical properties of a nearest-neighbor lattice random walk. Here we develop a theory allowing one to calculate the number of visits by a photon to a given depth, if it is eventually detected at an absorbing surface. This mimics cw measurements made on biological tissue and is directed towards characterizing the depth reached by photons injected at the surface. Our development of the theory uses formalism based on the theory of a continuous-time random walk (CTRW). Formally exact results are given in the Fourier-Laplace domain, which, in turn, are used to generate approximations for parameters of physical interest.
Resumo:
As opposed to objective definitions in soil physics, the subjective term “soil physical quality” is increasingly found in publications in the soil physics area. A supposed indicator of soil physical quality that has been the focus of attention, especially in the Brazilian literature, is the Least Limiting Water Range (RLL), translated in Portuguese as "Intervalo Hídrico Ótimo" or IHO. In this paper the four limiting water contents that define RLLare discussed in the light of objectively determinable soil physical properties, pointing to inconsistencies in the RLLdefinition and calculation. It also discusses the interpretation of RLL as an indicator of crop productivity or soil physical quality, showing its inability to consider common phenological and pedological boundary conditions. It is shown that so-called “critical densities” found by the RLL through a commonly applied calculation method are questionable. Considering the availability of robust models for agronomy, ecology, hydrology, meteorology and other related areas, the attractiveness of RLL as an indicator to Brazilian soil physicists is not related to its (never proven) effectiveness, but rather to the simplicity with which it is dealt. Determining the respective limiting contents in a simplified manner, relegating the study or concern on the actual functioning of the system to a lower priority, goes against scientific construction and systemic understanding. This study suggests a realignment of the research in soil physics in Brazil with scientific precepts, towards mechanistic soil physics, to replace the currently predominant search for empirical correlations below the state of the art of soil physics.
Resumo:
The ability to determine the location and relative strength of all transcription-factor binding sites in a genome is important both for a comprehensive understanding of gene regulation and for effective promoter engineering in biotechnological applications. Here we present a bioinformatically driven experimental method to accurately define the DNA-binding sequence specificity of transcription factors. A generalized profile was used as a predictive quantitative model for binding sites, and its parameters were estimated from in vitro-selected ligands using standard hidden Markov model training algorithms. Computer simulations showed that several thousand low- to medium-affinity sequences are required to generate a profile of desired accuracy. To produce data on this scale, we applied high-throughput genomics methods to the biochemical problem addressed here. A method combining systematic evolution of ligands by exponential enrichment (SELEX) and serial analysis of gene expression (SAGE) protocols was coupled to an automated quality-controlled sequence extraction procedure based on Phred quality scores. This allowed the sequencing of a database of more than 10,000 potential DNA ligands for the CTF/NFI transcription factor. The resulting binding-site model defines the sequence specificity of this protein with a high degree of accuracy not achieved earlier and thereby makes it possible to identify previously unknown regulatory sequences in genomic DNA. A covariance analysis of the selected sites revealed non-independent base preferences at different nucleotide positions, providing insight into the binding mechanism.
Resumo:
Background: Network reconstructions at the cell level are a major development in Systems Biology. However, we are far from fully exploiting its potentialities. Often, the incremental complexity of the pursued systems overrides experimental capabilities, or increasingly sophisticated protocols are underutilized to merely refine confidence levels of already established interactions. For metabolic networks, the currently employed confidence scoring system rates reactions discretely according to nested categories of experimental evidence or model-based likelihood. Results: Here, we propose a complementary network-based scoring system that exploits the statistical regularities of a metabolic network as a bipartite graph. As an illustration, we apply it to the metabolism of Escherichia coli. The model is adjusted to the observations to derive connection probabilities between individual metabolite-reaction pairs and, after validation, to assess the reliability of each reaction in probabilistic terms. This network-based scoring system uncovers very specific reactions that could be functionally or evolutionary important, identifies prominent experimental targets, and enables further confirmation of modeling results. Conclusions: We foresee a wide range of potential applications at different sub-cellular or supra-cellular levels of biological interactions given the natural bipartivity of many biological networks.