986 resultados para Physical-chemical
Resumo:
Alginate is one the materials most employed in practice to make dental impressions. Substances like zinc, cadmium and lead silicate, which are included in several alginate brands with the aim of improving their physical, chemical and mechanical properties, are a source of serious concern as regards their toxicity. The most serious chronic effect of oral exposure to cadmium is renal toxicity. Assimilation of lead has deleterious effects on the gastrointestinal tract, hematopoietic system, cardiovascular system, central and peripheral nervous systems, kidneys, immune system, and reproductive system. Chronic oral exposures to zinc have resulted in hypochromic and microcyte anemia in some individuals. The aim of the present study was to measure the cadmium, lead and zinc contents of seven brands of alginate for dental use on sale in Brazil. The samples were weighed and placed in the Teflon cups of a closed-system microwave oven. Aqua regia (4mL concentrated HCI:HNO3, 3:1 v/v) and hydrofluoric acid (2mL concentrated HF) were added to the samples, which were then subjected to heating. The samples were then cooled to room temperature and diluted to 25 mL in deionized water in a volumetric glass flask. The samples were diluted in duplicate and analyzed against a reagent blank. The analyses were performed in an atomic absorption flame spectrophotometer. Neither lead nor cadmium was detected. Zinc contents ranged from 0.001% to 1.36% by weight. The alginates exhibited low contents of the metals under study and gave no cause for concern regarding toxicity; even so, it is advisable to monitor potentially toxic materials continually and to analyze their plasmatic levels in the professionals working with them.
Resumo:
Carambola fruit ('Fwang Tung') were picked at two stages of maturity: mature-green (50% yellow) and mature (100% yellow). Fruit were washed with water, dipped in NaOCl solution (200 mg.L-1 for 5 minutes), and stored over night at 10°C. Fruit were sliced manually in to pieces of approximately 1 cm thickness. Slices were rinsed with NaOCl solution at 20 mg.L-1, drained for 3 minutes, and packaged in polyethylene tereftalate (PET) trays provided with a fit cover (Neoform® N94). Packages were stored at 6.5°C and 85% RH for 9 days, and samples taken every 3 days for physical, chemical and biochemical analysis, respiration, and internal atmosphere composition. Immediately after cutting, slices at both stages of maturity showed a wounding response with a 5-fold increase in respiration rate. Polygalacturonase (PG) and polyphenol oxidase (PPO) activity did not differ between stages of maturity. Despite the less mature stage being less preferred at the sensory evaluation owing to its greenish peel, the best stage of maturity for carambola fresh-cut production was mature-green, due to a higher resistance to cutting, and presenting a better colour and appearance maintenance for up to 9 days.
Resumo:
In the present work it was studied the main aspect that influences on degradation and physical-chemical properties at grain-boundary region of metal oxide varistors and its consequences on microstructure and nonohmic electric properties. Based on the comprehension of the degradation aspects it was proposed some methodologies to recover the varistors nonohmic properties after being failed with long (2000 μs) and short current pulses (8/20 μs). Our analysis shown that one of the cause of degradation process is related to the lowering of oxygen species amount at grain-boundary region. Therefore, it is possible to re-promote oxygen enrichment of such regions by specific thermal treatments in rich oxygen atmospheres (the best condition found in the present work was temperatures around 900°C for 2 h at an oxygen flux of 15 1/h). The proposed nonohmic properties recovering procedure appear to be valid for all kind metal oxide varistors studied and is very important from technological point of view.
Resumo:
Achyrocline alata occurs in a dense and low vegetation in Mato Grosso do Sul State, Brazil and it has been studied under physical-chemical and yield aspects, being scarce anatomical data. The present work has as objective the study of the aerial vegetative axis. Stem is cylindrical and hairy, having five wings, which are arisen from their leaves. The blade shows the presence of uniseriate epidermis, which is covered by the cuticle of variable thickness; and non-glandular and glandular trichomes. The non-glandular trichomes are uniseriate and multicellular and have their apex cell in whip form, while the glandular trichomes are multicellular, uniseriate or biseriate. The mesophyll is dorsiventral with uni-stratified palisade parenchyma in most of the cases and lacunal parenchyma formed by three to four layers of irregular cells. Only one collateral vascular bundle occurs in the midvein. Stem in transversal section is covered by epidermis with trichomes similar to leaves; the cortex is constituted by a discontinuous area of angular collenchyma, which is followed by chlorophyll parenchyma. Vascular cylinder that is delimited by pericycle shows vascular bundles of collateral type. In the secondary structure, the periderm is originated from epidermal and subepidermal tissues. In vascular region, the fascicular cambium differs into secondary xylem and phloem, while interfascicular cambium produces sclerenchymatous tissue.
Resumo:
Alginate or irreversible hydrocolloid is one the most accepted and frequently employed impression materials in dental practice. Substances like zinc, cadmium, lead silicate and fluorides, which are included in several alginate brands with the aim of improving their physical, chemical and mechanical properties, are a source of serious concern as regards their toxicity. Some brands of alginate have been reported to contain potentially toxic fluorides and metals such as cadmium, lead and zinc silicates, either singly or combined. Consequently, special care should be taken while preparing of these materials. It is necessary to monitor potentially toxic chemicals and metals in the alginates continually to avoid contamination of dental professionals and patients. In this review, alginates used in dentistry are analyzed for potential toxicity.
Resumo:
The compaction behavior of powdered solids used in tablets can be dominated by the physical-chemical properties of the excipients because, frequently, they are present in much larger amounts than the drug in tablet formulation. The aim of this study was to evaluate the influence of the size of lactose granules on the physical characteristics of tablets produced in punches of various diameters, since this relation has not been explored in the literature. Granules were produced in several sizes by wet granulation and compressed in punches of different diameters by applying different forces. Size distribution, apparent density and flow of granules were evaluated, as well as the physical characteristics of the tablets (weight, friability, hardness and disintegration time). The results indicate that in situations where excipient characteristics predominate due to low drug content, as in the 7 mm punch, the selection of granule size is important for the mechanical strength of tablet. On the other hand, with the 9, 11 and 13mm punches, it was possible to produce strong tablet from all sizes of granules.
Resumo:
Samples of paint (P), reused PET (PET-R) and paint/PET-R mixtures (PPET-R) were evaluated using DSC to verify their physical-chemical properties and thermal behavior. Films from paints and PPET-R are visually similar. It was possible to establish that the maximum amount of PET-R that can be added to paint without significantly altering its filming properties is 2%. The cure process (80-203°C) was identified through DSC curves. The kinetic parameters, activation energy (E a) and Arrhenius parameters (A) for the samples containing 0.5 to 1% of PET-R, were calculated using the Flynn-Wall-Ozawa isoconversional method. It was observed that for greater amounts of PET-R added, there is a decrease in the E a values for the cure process. A Kinetic compensation effect (KCE), represented by the equation InA=-2.70+0.31E a was observed for all the samples. The most suitable kinetic model to describe this cure process is the autocatalytic Šesták-Berggreen, model applied to heterogeneous systems. © 2007 Springer Science+Business Media, LLC.
Resumo:
The objective of this study was to evaluate the toxicity of water which flows toward the beaches of Santos, SP, Brazil. Water samples were collected from eight urban drainage channels and a small creek, in March, April and August 2005. For each sample, some physical-chemical parameters were analyzed: pH, dissolved oxygen, temperature, salinity, presence of free chlorine and total ammonia contents. Acute toxicity tests (48h) with Daphnia similis were also performed with the samples. The level of ammonia was relatively high in the majority of the samples (≥ 1.5 mg/L), and free chlorine was measurable in most of them. Acute toxicity was observed in four water samples (stations 3, 4, 5 and 7), at least in one occasion. The toxicity was positively correlated with the ammonia concentrations and salinity. Because acute toxicity was detected, actions aiming to control the pollution sources and improve the water quality are recommended.
Resumo:
In areas where human activities, as agriculture, are developed land use contributes to physical, chemical and biological characteristics of water. This study aimed to identify physical and chemical variations of the water monitoring network in 4 first magnitude watersheds with different land use/occupation in the hydrographic basin of the Glori Farm Creek in the city of Taquaritinga, State of Sao Paulo, from February to July, 2005. The methodology consisted of weekly sample water collections to naalyze turbidity, temperature, dissolved oxygen, pH and electric conductivity. The characterization of the hydrological conditions of the watersheds showed that agricultural activities, including the productive system of the sugarcane cultivation, have affected the quality of water resources.
Resumo:
The purpose of the present study was to evaluate, using a biomechanical test, the force needed to remove implants with surface modification by laser (Nd:YAG) in comparison with implants with machined surfaces. Twenty-four rabbits received one implant with each surface treatment in the tibia, machined surface (MS) and laser-modified surface (LMS). After 4, 8 and 12 weeks of healing, the removal torque was measured by a torque gauge. The surfaces studied were analyzed according to their topography, chemical composition and roughness. The average removal torque in each period was 23.28, 24.0 and 33.85 Ncm for MS, and 33.0, 39.87 and 54.57 Ncm for LMS, respectively. The difference between the surfaces in all periods of evaluation was statistically significant (p < 0.05). Surface characterization showed that a deep and regular topography was provided by the laser conditioning, with a great quantity of oxygen ions when compared to the MS. The surface micro-topography analysis showed a statistical difference (p < 0.01) between the roughness of the LMS (R a = 1.38 ± 0.23 μm) when compared to that of the MS (R a = 0.33 ± 0.06 μm). Based on these results, it was possible to conclude that the LMS implants' physical-chemical properties increased bone-implant interaction when compared to the MS implants. © 2009 Sociedade Brasileira de Pesquisa Odontológica.
Resumo:
The environmental degradation observed in the Piracicaba, Capivari and Jundiaí watershed has been one of the principal preoccupations of the environmental agencies in the state of São Paulo, Brazil. In this context, there is inserted the Americana county which is cut by streams of unsuitable quality for the human consumption and other uses. The main goal of the present work was evaluated the water quality of the Recanto Creek, affluent of the Quilombo stream, at the Americana county, state of São Paulo, Brazil. The research was developed in the period from March of 2007 to March of 2008, when it was measured the flow and the following physical-chemical water quality parameters: temperature; turbidity; pH; dissolved oxygen (OD); phosphorus (P); ammonia nitrogen (NH 4); nitrate (NO 3); chemical demand of oxygen (DQO), besides total coliforms. The results demonstrated a variation of the flow from 34.3 to 375.2 L s -1, during the evaluated period. The parameters dissolved oxygen, phosphorus, ammonia nitrogen and nitrate presented values out of the limits recommended for rivers of class 3, like the Recanto Creek, suggesting water pollution due to the organic matter disposal.
Resumo:
Phosphorus is considered an essential element for plants, but it is found in low amounts in Brazilian soils, mainly in areas destined to pastures, and the application of organic matter contributes to the improvement of physical, chemical and biological soil attributes. The research had the objective of evaluating the application effects of the Bokashi organic compound on soil macro and micronutrients contents and leaves, as well as on Brachiaria brizantha cv. Marandú dry mass yield, evaluating the potential of the organic fertilizer as phosphorus source, in comparison with conventional chemical fertilizers. Different organic compound doses supplied the soil with 17 kg P2O5 ha-1, 34 kg P2O5 ha-1, 68 kg P2O5 ha-1, 136 kg P 2O5 ha-1, and 204 kg P2O5 ha-1, comparing it with the conventional chemical fertilizer and the control. The results revealed that the organic fertilizer Bokashi can adequately replace the conventional chemical fertilizer of Brachiaria brizantha cv. Marandú, supplying the soil and plant with appropriate nutrients levels and maintaining the dry mass yield.
Resumo:
This study describes the chemical and physical-chemical profile of plant drug and ethanolic extract obtained from fruits of Solanum lycocarpum A. St.-Hill. (Solanaceae). The physical and chemical analysis involved the granulometry determination, non-compacted apparent density, loss on drying in oven and in infrared scale, pH, ash values and extractive values. The results determined the physical-chemical characteristics of the drug plant. It was also carried out the microbiological control of the plant drug. The preliminary phytochemical screening featured the presence of tannins, flavonoids and saponins in the plant drug and alkaloids and steroids in the ethanolic exctract. The solamargine and solasonine glycoalkaloids were identified through TLC and GC/ MS. The levels of total phenols and tannins were quantified in the extract (8.90% and 6,85% respectively). Such studies contribute to the chemical identification and quality control of S. lycocarpum fruits. © 2010 Phcog.net.
Resumo:
Brazil's Atlantic Forest ecosystem has been greatly affected by land use changes, with only 11.26% of its original vegetation cover remaining. Currently, Atlantic Forest restoration is receiving increasing attention because of its potential for carbon sequestration and the important role of soil carbon in the global carbon balance. Soil organic matter is also essential for physical, chemical and biological components of soil fertility and forest sustainability. This study evaluated the potential for soil recovery in contrasting restoration models using indigenous Atlantic Forest tree species ten years after their establishment. The study site is located in Botucatu municipality, São Paulo State-Brazil, in a loamy dystrophic Red-Yellow Argisol site (Typic Hapludult). Four treatments were compared: i) Control (Spontaneous Restoration); ii) Low Diversity (five fast-growing tree species established by direct seeding); iii) High Diversity (mixed plantings of 41 species established with seedlings) and; iv) Native Forest (well conserved neighboring forest fragment). The following soil properties were evaluated: (1) physical-texture, density and porosity; (2) chemical-C, N, P, S, K, Ca, Mg, Al and pH; (3) biological-microbial biomass. Litter nutrient concentrations (P, S, K, Ca and Mg) and C and N litter stocks were determined. Within ten years the litter C and N stocks of the Low Diversity treatment area were higher than Control and similar to those in both the High Diversity treatment and the Native Forest. Soil C stocks increased through time for both models and in the Control plots, but remained highest in the Native Forest. The methods of restoration were shown to have different effects on soil dynamics, mainly on chemical properties. These results show that, at least in the short-term, changes in soil properties are more rapid in a less complex system like the Low Diversity model than in the a High Species Diversity model. For both mixed plantation systems, carbon soil cycling can be reestablished, resulting in increases in carbon stocks in both soil and litter.
Resumo:
The present study evaluated the effect of the use of natural antioxidants in different spent hens processed meat, the physical-chemical and sensory characteristics of product were analyzed. The experiment was conducted at the Technology Laboratory of Animal Products, Department of Technology - FCAV/Unesp - Campus of Jaboticabal. Forty-five laying hens with approximately 80 weeks of age were used, distributed in a completely randomized experimental design in a 4x4 factorial arrangement, 4 condiment types (control, rosemary, clove and oregano, and the last three natural antioxidants) and 4 storage times (0; 3; 6 and 9 days at 4°C), with sixteen treatments and tree repetitions. It were evaluated the characteristics of humidity, pH, color, cooking loss, shear force, TBARS number and sensory analyze. The averages were obtained by Tukey test 5% of significance. The results showed an interaction between the storage time and condiments types in all analyzed parameters. It was concluded that oregano use decreased the processed meat oxidation, also pleased the judges in sensory analysis. The lowest notes in sensory analysis were obtained with the treatment that contained clove.