931 resultados para Peritoneal macrophages
Resumo:
Precise knowledge regarding cellular uptake of nanoparticles is of great importance for future biomedical applications. Four different endocytotic uptake mechanisms, that is, phagocytosis, macropinocytosis, clathrin- and caveolin-mediated endocytosis, were investigated using a mouse macrophage (J774A.1) and a human alveolar epithelial type II cell line (A549). In order to deduce the involved pathway in nanoparticle uptake, selected inhibitors specific for one of the endocytotic pathways were optimized regarding concentration and incubation time in combination with fluorescently tagged marker proteins. Qualitative immunolocalization showed that J774A.1 cells highly expressed the lipid raft-related protein flotillin-1 and clathrin heavy chain, however, no caveolin-1. A549 cells expressed clathrin heavy chain and caveolin-1, but no flotillin-1 uptake-related proteins. Our data revealed an impeded uptake of 40 nm polystyrene nanoparticles by J774A.1 macrophages when actin polymerization and clathrin-coated pit formation was blocked. From this result, it is suggested that macropinocytosis and phagocytosis, as well as clathrin-mediated endocytosis, play a crucial role. The uptake of 40 nm nanoparticles in alveolar epithelial A549 cells was inhibited after depletion of cholesterol in the plasma membrane (preventing caveolin-mediated endocytosis) and inhibition of clathrin-coated vesicles (preventing clathrin-mediated endocytosis). Our data showed that a combination of several distinguishable endocytotic uptake mechanisms are involved in the uptake of 40 nm polystyrene nanoparticles in both the macrophage and epithelial cell line.
Resumo:
The polarization into M1 and M2 macrophages (MΦ) is essential to understand MΦ function. Consequently, the aim of this study was to determine the impact of IFN-γ (M1), IL-4 (M2) and IFN-β activation of MΦ on the susceptibility to genotype 1 and 2 porcine reproductive respiratory syndrome (PRRS) virus (PRRSV) strains varying in virulence. To this end, monocyte-derived MΦ were generated by culture during 72h and polarization was induced for another 24h by addition of IFN-γ, IL-4 or IFN-β. MΦ were infected with a collection of PRRSV isolates belonging to genotype 1 and genotype 2. Undifferentiated and M2 MΦ were highly susceptible to all PRRSV isolates. In contrast, M1 and IFN-β activated MΦ were resistant to low pathogenic genotype 1 PRRSV but not or only partially to genotype 2 PRRSV strains. Interestingly, highly virulent PRRSV isolates of both genotypes showed particularly high levels of infection compared with the prototype viruses in both M1 and IFN-β-treated MΦ (P<0.05). This was seen at the level of nucleocapsid expression, viral titres and virus-induced cell death. In conclusion, by using IFN-γ and IFN-β stimulated MΦ it is possible to discriminate between PRRSV varying in genotype and virulence. Genotype 2 PRRSV strains are more efficient at escaping the intrinsic antiviral effects induced by type I and II IFNs. Our in vitro model will help to identify viral genetic elements responsible for virulence, an information important not only to understand PRRS pathogenesis but also for a rational vaccine design. Our results also suggest that monocyte-derived MΦ can be used as a PRRSV infection model instead of alveolar MΦ, avoiding the killing of pigs.
Resumo:
OBJECTIVE
To evaluate the long term oncological and functional outcomes after readaptation of the dorsolateral peritoneal layer following pelvic lymph node dissection (PLND) and cystectomy .
PATIENTS AND METHODS
A randomised, single-center, single-blinded, two-arm trial was conducted on 200 consecutive cystectomy patients who underwent PLND and cystectomy for bladder cancer (
Resumo:
Our previous gene expression analysis identified phospholipase A2 group IIA (PLA2G2A) as a potential biomarker of ovarian endometriosis. The aim of this study was to evaluate PLA2G2A mRNA and protein levels in tissue samples (endometriomas and normal endometrium) and in serum and peritoneal fluid of ovarian endometriosis patients and control women. One-hundred and sixteen women were included in this study: the case group included 70 ovarian endometriosis patients, and the control group included 38 healthy women and 8 patients with benign ovarian cysts. We observed 41.6-fold greater PLA2G2A mRNA levels in endometrioma tissue, compared to normal endometrium tissue. Using Western blotting, PLA2G2A was detected in all samples of endometriomas, but not in normal endometrium, and immunohistochemistry showed PLA2G2A-specific staining in epithelial cells of endometrioma paraffin sections. However, there were no significant differences in PLA2G2A levels between cases and controls according to ELISA of peritoneal fluid (6.0 ± 4.4 ng/ml, 6.6 ± 4.3 ng/ml; p = 0.5240) and serum (2.9 ± 2.1 ng/ml, 3.1 ± 2.2 ng/ml; p = 0.7989). Our data indicate that PLA2G2A is implicated in the pathophysiology of ovarian endometriosis, but that it cannot be used as a diagnostic biomarker.
Resumo:
Bacterial sepsis is a severe clinical condition, leading to severe sepsis, septic shock, and death. The complex pathophysiology of sepsis is not yet fully understood. Cytokines, released by immune cells such as macrophages, play an important role in the pathophysiology of sepsis. Kupffer cells are the largest population of macrophages in the body. Purinergic signaling, mediated by different nucleosides and nucleotides, and purinergic receptors, has been shown to have various effects on cytokine release, inflammatory processes and the immune system. In our work with in vitro experiments we studied the effect of extracellular nucleotides on the release of TNFα by primary murine Kupffer cells, and the effect of extracellular nucleotides on the phagocytosis of murine RAW 264.7 and human U-937 cell culture macrophages. Secretion of TNFα was measured using ELISA, phagocytosis of bio particles was measured using a plate reader phagocytosis assay and flow cytometry. Our experiments show, that extracellular LPS stimulate release of TNFα in murine Kupffer cells and that extracellular nucleotides inhibit this effect in a dose dependent matter. Our other experiments show phagocytosis of fluorescence labeled bio particles by both macrophage cell lines RAW 264.7 and U-937 in a dose dependent manner. The experiments could not show an effect of extracellular nucleotides on phagocytosis of cell culture macrophages.
Resumo:
Peritoneal transport characteristics and residual renal function require regular control and subsequent adjustment of the peritoneal dialysis (PD) prescription. Prescription models shall facilitate the prediction of the outcome of such adaptations for a given patient. In the present study, the prescription model implemented in the PatientOnLine software was validated in patients requiring a prescription change. This multicenter, international prospective cohort study with the aim to validate a PD prescription model included patients treated with continuous ambulatory peritoneal dialysis. Patients were examined with the peritoneal function test (PFT) to determine the outcome of their current prescription and the necessity for a prescription change. For these patients, a new prescription was modeled using the PatientOnLine software (Fresenius Medical Care, Bad Homburg, Germany). Two to four weeks after implementation of the new PD regimen, a second PFT was performed. The validation of the prescription model included 54 patients. Predicted and measured peritoneal Kt/V were 1.52 ± 0.31 and 1.66 ± 0.35, and total (peritoneal + renal) Kt/V values were 1.96 ± 0.48 and 2.06 ± 0.44, respectively. Predicted and measured peritoneal creatinine clearances were 42.9 ± 8.6 and 43.0 ± 8.8 L/1.73 m2/week and total creatinine clearances were 65.3 ± 26.0 and 63.3 ± 21.8 L/1.73 m2/week, respectively. The analysis revealed a Pearson's correlation coefficient for peritoneal Kt/V of 0.911 and Lin's concordance coefficient of 0.829. The value of both coefficients was 0.853 for peritoneal creatinine clearance. Predicted and measured daily net ultrafiltration was 0.77 ± 0.49 and 1.16 ± 0.63 L/24 h, respectively. Pearson's correlation and Lin's concordance coefficient were 0.518 and 0.402, respectively. Predicted and measured peritoneal glucose absorption was 125.8 ± 38.8 and 79.9 ± 30.7 g/24 h, respectively, and Pearson's correlation and Lin's concordance coefficient were 0.914 and 0.477, respectively. With good predictability of peritoneal Kt/V and creatinine clearance, the present model provides support for individual dialysis prescription in clinical practice. Peritoneal glucose absorption and ultrafiltration are less predictable and are likely to be influenced by additional clinical factors to be taken into consideration.
Resumo:
Aberrant antigens expressed by tumor cells, such as in melanoma, are often associated with humoral immune responses, which may in turn influence tumor progression. Despite recent data showing the central role of adaptive immune responses on cancer spread or control, it remains poorly understood where and how tumor-derived antigen (TDA) induces a humoral immune response in tumor-bearing hosts. Based on our observation of TDA accumulation in B cell areas of lymph nodes (LNs) from melanoma patients, we developed a pre-metastatic B16.F10 melanoma model expressing a fluorescent fusion protein, tandem dimer tomato, as a surrogate TDA. Using intravital two-photon microscopy (2PM) and whole-mount 3D LN imaging of tumor-draining LNs in immunocompetent mice, we report an unexpectedly widespread accumulation of TDA on follicular dendritic cells (FDCs), which were dynamically scanned by circulating B cells. Furthermore, 2PM imaging identified macrophages located in the subcapsular sinus of tumor-draining LNs to capture subcellular TDA-containing particles arriving in afferent lymph. As a consequence, depletion of macrophages or genetic ablation of B cells and FDCs resulted in dramatically reduced TDA capture in tumor-draining LNs. In sum, we identified a major pathway for the induction of humoral responses in a melanoma model, which may be exploitable to manipulate anti-TDA antibody production during cancer immunotherapy.
Resumo:
Endometriosis is a gynaecological condition with an associated chronic inflammatory response. The ectopic growth of 'lesions', consisting of endometrial cells outside the uterine cavity, stimulates an inflammatory response initiating the activation of macrophages, and resulting in increased cytokine and growth factor concentrations in the peritoneal fluid (PF). Endometriosis‑associated inflammation is chronic and long lasting. In patients with endometriosis, the risk of developing ovarian cancer within 10 years, particularly of the endometrioid or clear cell subtype, is increased 2.5‑4 times. Endometriosis creates a peritoneal environment that exposes the affected endometriotic and the normal ovarian surface epithelial cells to agents that have been suggested to be involved in the pathogenesis of cancer. Concentrations of several cytokines and growth factors were increased in the PF of patients with endometriosis. The ovarian cancer marker, CA125, was one such growth factor; however, this remains to be confirmed. Human epididymis protein 4 (HE4) was detected at high concentrations in patients with ovarian cancer and was identified as the best biomarker for the detection of ovarian cancer. The present study determined the levels of HE4 and CA125 in the peritoneal fluid of 258 patients with and 100 control individuals without endometriosis attending the Department of Obstetrics and Gynaecology, University of Berne (Berne, Switzerland) between 2007 and 2014. The cases were subdivided into groups without hormonal treatment (n=107), or treated with combined oral contraceptives (n=45), continuous gestagens (n=56) or GnRH agonists (n=50). Both of these markers were significantly increased in the non‑treated endometriosis samples compared with the control group. Hormone treatment with either of the three agents mentioned resulted in the concentration of CA125 returning to the control levels and the concentration of HE4 decreasing to below the control levels. CA125, however not HE4, significantly differed between the proliferative and secretory cycle phases. Since HE4 is sensitive to hormonal treatment and robust towards menstrual cycle variation, HE4 is potentially superior to CA125 as an endometriosis marker and therefore has greater potential as a marker for the identification of women at risk of developing ovarian cancer.
Resumo:
Diarrhea is a major cause of morbidity and mortality worldwide. Shigella causes up to 20% of all diarrhea. Gut-level immunity and breast-feeding of infants are important factors in protection against shigellosis. The lumen of the gut is lined with lymphocytes which mediate natural killer cytotoxicity, NKC, and antibody-dependent cellular cytotoxicity, ADCC. NKC and ADCC are extracellular, nonphagocytic leukocyte killing mechanisms, which occur in the absence of complement, without prior antigen stimulation, and without regard to the major histocompatibility complex. In this study, virulent and avirulent shigellae were used as the target cells. Leukocytes from peripheral blood, breast milk, and guinea pig gut-associated tissues were used as effector cells. Adult human peripheral blood mononuclear cells and lymphocytes, but not macrophages or polymorphonuclear leukocytes, mediated NKC and ADCC at an optimal effector to target cell ratio of 100:1 in a 60 minute bactericidal assay. An antiserum dilution of 1:10 was optimal for ADCC. Whole, viable lymphocytes were necessary for cytotoxicity. Lymphocyte NKC, but not ADCC, was greatly enhanced by interferon. Lymphocyte NKC occurred against several virulent strains of S. sonnei and a virulent strain of S. flexneri. ADCC (using immune serum directed against S. sonnei) occurred against virulent S. sonnei, but not against avirulent S. sonnei or virulent S. flexneri. Lymphocyte ADCC was not inhibited by the presence of phenylbutazone or by pretreatment of lymphocytes with anti-HNK serum plus complement. Both adherent and non-adherent breast milk leukocytes mediated NKC and ADCC. Mononuclear cells from young children demonstrated normal ADCC, when compared to ADCC of adult cells. Neonatal cord blood and a CGD patient's peripheral blood mononuclear and ploymorphonuclear cells demonstrated high ADCC compared to adult cells. Intraepithelial lymphocytes, spleen cells, and peritoneal cells from normal guinea pigs demonstrated NKC and ADCC. Animals which had been starved and opiated were made susceptible to infection by Shigella. The susceptible animals demonstrated deficient NKC and ADCC with all three leukocyte populations. High NKC and ADCC activity of gut-associated leukocytes from human breast milk and guinea pig tissues may correlate with resistance to infection. ^
Resumo:
The progressive growth of epithelial ovarian cancer tumor is regulated by proangiogenic molecules and growth factors released by tumor cells and the microenvironment. Previous studies showed that the expression of interleukin-8 (IL-8) directly correlates with the progression of human ovarian carcinomas implanted into the peritoneal cavity of nude mice. We examined the expression level of IL-8 in archival specimens of primary human ovarian carcinoma from patients undergoing curative surgery by in situ mRNA hybridization technique. The expression of IL-8 was significantly higher in patients with stage III disease than in patients with stage I disease. To investigate the role of IL-8 in the progressive growth of ovarian cancer, we isolated high- and low-IL-8 producing clones from parental Hey-A8 human ovarian cancer cells, and compared their proliferative activity and tumorigenicity in nude mice. The effect of exogenous IL-8 and IL-8 neutralizing antibody on ovarian cancer cell proliferation was investigated. Finally, we studied the modulation of IL-8 expression in ovarian cancer cells by sense and antisense IL-8 expression vector transfection and its effect on proliferation and tumorigenicity. We concluded that IL-8 has a direct growth potentiating activity in human ovarian cancer cells. ^ The expression level of IL-8 directly correlates with disease progression of human ovarian cancer, but the mechanism of induction is unknown. Since hypoxia and acidic pH are common features in solid tumors, we determined whether hypoxic and acidic conditions could regulate the expression of IL-8. Culturing the human ovarian cancer cells in hypoxic or acidic medium led to a significant increase in IL-8 mRNA and protein. Hypoxic- and acidosis-mediated transient increase in IL-8 expression involved both transcriptional activation of the IL-8 gene and enhanced stability of the IL-8 mRNA. Furthermore, we showed that IL-8 transcription activation by hypoxia or acidosis required the cooperation of NF-κB and AP-1 binding sites. ^ Finally, we studied novel therapies against human ovarian cancer. First, we determined whether inhibition of the catalytic tyrosine kinase activity of the receptors for vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) inhibits the formation of malignant ascites and the progressive growth of human ovarian carcinoma cells implanted into the peritoneal cavity of nude mice. Our results suggest that blockade of the VEGF/VPF receptor may be an efficient strategy to inhibit formation of malignant ascites and growth of VEGF/VPF-dependent human ovarian carcinomas. Secondly, we determined whether local sustained production of murine interferon-β could inhibit the growth of human ovarian cancer cells in the peritoneal cavity of nude mice. Our results showed that local production of IFN-β could inhibit the in vivo growth of human ovarian cancer cells by upregulating the expression of the inducible nitric oxide synthase (NOS) in host macrophages. ^
Resumo:
Objectives. Previous studies have shown a survival advantage in ovarian cancer patients with Ashkenazi-Jewish (AJ) BRCA founder mutations, compared to sporadic ovarian cancer patients. The purpose of this study was to determine if this association exists in ovarian cancer patients with non-Ashkenazi Jewish BRCA mutations. In addition, we sought to account for possible "survival bias" by minimizing any lead time that may exist between diagnosis and genetic testing. ^ Methods. Patients with stage III/IV ovarian, fallopian tube, or primary peritoneal cancer and a non-Ashkenazi Jewish BRCA1 or 2 mutation, seen for genetic testing January 1996-July 2007, were identified from genetics and institutional databases. Medical records were reviewed for clinical factors, including response to initial chemotherapy. Patients with sporadic (non-hereditary) ovarian, fallopian tube, or primary peritoneal cancer, without family history of breast or ovarian cancer, were compared to similar cases, matched by age, stage, year of diagnosis, and vital status at time interval to BRCA testing. When possible, 2 sporadic patients were matched to each BRCA patient. An additional group of unmatched, sporadic ovarian, fallopian tube and primary peritoneal cancer patients was included for a separate analysis. Progression-free (PFS) & overall survival (OS) were calculated by the Kaplan-Meier method. Multivariate Cox proportional hazards models were calculated for variables of interest. Matched pairs were treated as clusters. Stratified log rank test was used to calculate survival data for matched pairs using paired event times. Fisher's exact test, chi-square, and univariate logistic regression were also used for analysis. ^ Results. Forty five advanced-stage ovarian, fallopian tube and primary peritoneal cancer patients with non-Ashkenazi Jewish (non-AJ) BRCA mutations, 86 sporadic-matched and 414 sporadic-unmatched patients were analyzed. Compared to the sporadic-matched and sporadic-unmatched ovarian cancer patients, non-AJ BRCA mutation carriers had longer PFS (17.9 & 13.8 mos. vs. 32.0 mos., HR 1.76 [95% CI 1.13–2.75] & 2.61 [95% CI 1.70–4.00]). In relation to the sporadic- unmatched patients, non-AJ BRCA patients had greater odds of complete response to initial chemotherapy (OR 2.25 [95% CI 1.17–5.41]) and improved OS (37.6 mos. vs. 101.4 mos., HR 2.64 [95% CI 1.49–4.67]). ^ Conclusions. This study demonstrates a significant survival advantage in advanced-stage ovarian cancer patients with non-AJ BRCA mutations, confirming the previous studies in the Jewish population. Our efforts to account for "survival bias," by matching, will continue with collaborative studies. ^
Resumo:
The survival of Mycobacterium tuberculosis (MTB) in macrophages largely plays upon its ability to manipulate the host immune response to its benefit. Trehalose 6,6'-dimycolate (TDM) is a glycolipid found abundantly on the surface of MTB. Preliminary studies have shown that MTB lacking TDM have a lower survival rate compared to wild-type MTB in infection experiments, and that lysosomal colocalization with the phagosome occurs more readily in delipidated MTB infections. The purpose of this dissertation is to identify the possible mechanistic roles of TDM and its importance to the survival of MTB in macrophages. Our hypothesis is that TDM promotes the survival of MTB by targeting specific immune functions in host macrophages. Our first specific aim is to evaluate the effects of TDM on MTB in surface marker expression and antigen presentation in macrophages. We characterized the surface marker response in murine macrophages infected with either TDM-intact or TDM-removed MTB. We found that the presence of TDM on MTB inhibited the expression of surface markers which are important for antigen presentation and costimulation to T cells. Then we measured and compared the ability of macrophages infected by MTB with or without TDM to present Antigen 85B to hybridoma T cells. Macrophages infected with TDM-intact MTB were found to be less efficient at antigen presentation than TDM-removed MTB. Our second aim is to identify molecular mechanisms which may be targeted by TDM to promote MTB survival in macrophages. We measured macrophage responsiveness to IFN-γ before or after MTB infection and correlated SOCS production to the presence of TDM on MTB. Macrophages infected with TDM-intact MTB were found to be less responsive to IFN-γ. This may be attributed to the TDM-driven production of SOCS, which was found to affect phosphorylation of the JAK-STAT signaling pathway. We also identified the importance of TLR2 and TLR4 in the initiation of SOCS by TDM-intact MTB in host macrophages. In conclusion, our studies reveal new insights into how TDM regulates macrophages and their immune functions to aid in the survival of MTB.^