809 resultados para Performance model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A wind catcher/tower natural ventilation system was installed in a seminar room in the building of the School of Construction Management and Engineering, the University of Reading in the UK . Performance was analysed by means of ventilation tracer gas measurements, indoor climate measurements (temperature, humidity, CO2) and occupant surveys. In addition, the potential of simple design tools was evaluated by comparing observed ventilation results with those predicted by an explicit ventilation model and the AIDA implicit ventilation model. To support this analysis, external climate parameters (wind speed and direction, solar radiation, external temperature and humidity) were also monitored. The results showed the chosen ventilation design provided a substantially greater ventilation rate than an equivalent area of openable window. Also air quality parameters stayed within accepted norms while occupants expressed general satisfaction with the system and with comfort conditions. Night cooling was maximised by using the system in combination with openable windows. Comparisons of calculations with ventilation rate measurements showed that while AIDA gave reasonably correlated results with the monitored performance results, the widely used industry explicit model was found to over estimate the monitored ventilation rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern buildings are designed to enhance the match between environment, spaces and the people carrying out work, so that the well-being and the performance of the occupants are all in harmony. Building services are systems that facilitate a healthy working environment within which workers productivity can be optimised in the buildings. However, the maintenance of these services is fraught with problems that may contribute to up to 50% of the total life cycle cost of the building. Maintenance support is one area which is not usually designed into the system as this is not common practice in the services industry. The other areas of shortfall for future designs are; client requirements, commissioning, facilities management data and post occupancy evaluation feedback which needs to be adequately planned to capture and document this information for use in future designs. At the University of Reading an integrated approach has been developed to assemble the multitude of aspects inherent in this field. The means records required and measured achievements for the benefit of both building owners and practitioners. This integrated approach can be represented in a Through Life Business Model (TLBM) format using the concept of Integrated Logistic Support (ILS). The prototype TLBM developed utilises the tailored tools and techniques of ILS for building services. This TLBM approach will facilitate the successful development of a databank that would be invaluable in capturing essential data (e.g. reliability of components) for enhancing future building services designs, life cycle costing and decision making by practitioners, in particular facilities managers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development and performance of a three-stage tubular model of the large human intestine is outlined. Each stage comprises a membrane fermenter where flow of an aqueous polyethylene glycol solution on the outside of the tubular membrane is used to control the removal of water and metabolites (principally short chain fatty acids) from, and thus the pH of, the flowing contents on the fermenter side. The three stage system gave a fair representation of conditions in the human gut. Numbers of the main bacterial groups were consistently higher than in an existing three-chemostat gut model system, suggesting the advantages of the new design in providing an environment for bacterial growth to represent the actual colonic microflora. Concentrations of short chain fatty acids and Ph levels throughout the system were similar to those associated with corresponding sections of the human colon. The model was able to achieve considerable water transfer across the membrane, although the values were not as high as those in the colon. The model thus goes some way towards a realistic simulation of the colon, although it makes no pretence to simulate the pulsating nature of the real flow. The flow conditions in each section are characterized by low Reynolds numbers: mixing due to Taylor dispersion is significant, and the implications of Taylor mixing and biofilm development for the stability, that is the ability to operate without washout, of the system are briefly analysed and discussed. It is concluded that both phenomena are important for stabilizing the model and the human colon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The feature model of immediate memory (Nairne, 1990) is applied to an experiment testing individual differences in phonological confusions amongst a group (N=100) of participants performing a verbal memory test. By simulating the performance of an equivalent number of “pseudo-participants” the model fits both the mean performance and the variability within the group. Experimental data show that high-performing individuals are significantly more likely to demonstrate phonological confusions than low performance individuals and this is also true of the model, despite the model’s lack of either an explicit phonological store or a performance-linked strategy shift away from phonological storage. It is concluded that a dedicated phonological store is not necessary to explain the basic phonological confusion effect, and the reduction in such an effect can also be explained without requiring a change in encoding or rehearsal strategy or the deployment of a different storage buffer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several pixel-based people counting methods have been developed over the years. Among these the product of scale-weighted pixel sums and a linear correlation coefficient is a popular people counting approach. However most approaches have paid little attention to resolving the true background and instead take all foreground pixels into account. With large crowds moving at varying speeds and with the presence of other moving objects such as vehicles this approach is prone to problems. In this paper we present a method which concentrates on determining the true-foreground, i.e. human-image pixels only. To do this we have proposed, implemented and comparatively evaluated a human detection layer to make people counting more robust in the presence of noise and lack of empty background sequences. We show the effect of combining human detection with a pixel-map based algorithm to i) count only human-classified pixels and ii) prevent foreground pixels belonging to humans from being absorbed into the background model. We evaluate the performance of this approach on the PETS 2009 dataset using various configurations of the proposed methods. Our evaluation demonstrates that the basic benchmark method we implemented can achieve an accuracy of up to 87% on sequence ¿S1.L1 13-57 View 001¿ and our proposed approach can achieve up to 82% on sequence ¿S1.L3 14-33 View 001¿ where the crowd stops and the benchmark accuracy falls to 64%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A tunable radial basis function (RBF) network model is proposed for nonlinear system identification using particle swarm optimisation (PSO). At each stage of orthogonal forward regression (OFR) model construction, PSO optimises one RBF unit's centre vector and diagonal covariance matrix by minimising the leave-one-out (LOO) mean square error (MSE). This PSO aided OFR automatically determines how many tunable RBF nodes are sufficient for modelling. Compared with the-state-of-the-art local regularisation assisted orthogonal least squares algorithm based on the LOO MSE criterion for constructing fixed-node RBF network models, the PSO tuned RBF model construction produces more parsimonious RBF models with better generalisation performance and is computationally more efficient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many evolutionary algorithm applications involve either fitness functions with high time complexity or large dimensionality (hence very many fitness evaluations will typically be needed) or both. In such circumstances, there is a dire need to tune various features of the algorithm well so that performance and time savings are optimized. However, these are precisely the circumstances in which prior tuning is very costly in time and resources. There is hence a need for methods which enable fast prior tuning in such cases. We describe a candidate technique for this purpose, in which we model a landscape as a finite state machine, inferred from preliminary sampling runs. In prior algorithm-tuning trials, we can replace the 'real' landscape with the model, enabling extremely fast tuning, saving far more time than was required to infer the model. Preliminary results indicate much promise, though much work needs to be done to establish various aspects of the conditions under which it can be most beneficially used. A main limitation of the method as described here is a restriction to mutation-only algorithms, but there are various ways to address this and other limitations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance benefit when using grid systems comes from different strategies, among which partitioning the applications into parallel tasks is the most important. However, in most cases the enhancement coming from partitioning is smoothed by the effects of synchronization overheads, mainly due to the high variability in the execution times of the different tasks, which, in turn, is accentuated by the large heterogeneity of grid nodes. In this paper we design hierarchical, queuing network performance models able to accurately analyze grid architectures and applications. Thanks to the model results, we introduce a new allocation policy based on a combination between task partitioning and task replication. The models are used to study two real applications and to evaluate the performance benefits obtained with allocation policies based on task replication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This correspondence introduces a new orthogonal forward regression (OFR) model identification algorithm using D-optimality for model structure selection and is based on an M-estimators of parameter estimates. M-estimator is a classical robust parameter estimation technique to tackle bad data conditions such as outliers. Computationally, The M-estimator can be derived using an iterative reweighted least squares (IRLS) algorithm. D-optimality is a model structure robustness criterion in experimental design to tackle ill-conditioning in model Structure. The orthogonal forward regression (OFR), often based on the modified Gram-Schmidt procedure, is an efficient method incorporating structure selection and parameter estimation simultaneously. The basic idea of the proposed approach is to incorporate an IRLS inner loop into the modified Gram-Schmidt procedure. In this manner, the OFR algorithm for parsimonious model structure determination is extended to bad data conditions with improved performance via the derivation of parameter M-estimators with inherent robustness to outliers. Numerical examples are included to demonstrate the effectiveness of the proposed algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fundamental principle in practical nonlinear data modeling is the parsimonious principle of constructing the minimal model that explains the training data well. Leave-one-out (LOO) cross validation is often used to estimate generalization errors by choosing amongst different network architectures (M. Stone, "Cross validatory choice and assessment of statistical predictions", J. R. Stast. Soc., Ser. B, 36, pp. 117-147, 1974). Based upon the minimization of LOO criteria of either the mean squares of LOO errors or the LOO misclassification rate respectively, we present two backward elimination algorithms as model post-processing procedures for regression and classification problems. The proposed backward elimination procedures exploit an orthogonalization procedure to enable the orthogonality between the subspace as spanned by the pruned model and the deleted regressor. Subsequently, it is shown that the LOO criteria used in both algorithms can be calculated via some analytic recursive formula, as derived in this contribution, without actually splitting the estimation data set so as to reduce computational expense. Compared to most other model construction methods, the proposed algorithms are advantageous in several aspects; (i) There are no tuning parameters to be optimized through an extra validation data set; (ii) The procedure is fully automatic without an additional stopping criteria; and (iii) The model structure selection is directly based on model generalization performance. The illustrative examples on regression and classification are used to demonstrate that the proposed algorithms are viable post-processing methods to prune a model to gain extra sparsity and improved generalization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The identification of non-linear systems using only observed finite datasets has become a mature research area over the last two decades. A class of linear-in-the-parameter models with universal approximation capabilities have been intensively studied and widely used due to the availability of many linear-learning algorithms and their inherent convergence conditions. This article presents a systematic overview of basic research on model selection approaches for linear-in-the-parameter models. One of the fundamental problems in non-linear system identification is to find the minimal model with the best model generalisation performance from observational data only. The important concepts in achieving good model generalisation used in various non-linear system-identification algorithms are first reviewed, including Bayesian parameter regularisation and models selective criteria based on the cross validation and experimental design. A significant advance in machine learning has been the development of the support vector machine as a means for identifying kernel models based on the structural risk minimisation principle. The developments on the convex optimisation-based model construction algorithms including the support vector regression algorithms are outlined. Input selection algorithms and on-line system identification algorithms are also included in this review. Finally, some industrial applications of non-linear models are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large scale air pollution models are powerful tools, designed to meet the increasing demand in different environmental studies. The atmosphere is the most dynamic component of the environment, where the pollutants can be moved quickly on far distnce. Therefore the air pollution modeling must be done in a large computational domain. Moreover, all relevant physical, chemical and photochemical processes must be taken into account. In such complex models operator splitting is very often applied in order to achieve sufficient accuracy as well as efficiency of the numerical solution. The Danish Eulerian Model (DEM) is one of the most advanced such models. Its space domain (4800 × 4800 km) covers Europe, most of the Mediterian and neighboring parts of Asia and the Atlantic Ocean. Efficient parallelization is crucial for the performance and practical capabilities of this huge computational model. Different splitting schemes, based on the main processes mentioned above, have been implemented and tested with respect to accuracy and performance in the new version of DEM. Some numerical results of these experiments are presented in this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new strategy for controlling rigid-robot manipulators in the presence of parametric uncertainties or un-modelled dynamics. The strategy combines an adaptation law with a well known robust controller proposed by Spong, which is derived using Lyapunov's direct method. Although the tracking problem of manipulators has been successfully solved with different strategies, there are some conditions under which their efficiency is limited. Specifically, their performance decreases when unknown loading masses or model disturbances are introduced. The aim of this work is to show that the proposed strategy performs better than existing algorithms, as verified with real-time experimental results with a Puma-560 robot. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A cross-platform field campaign, OP3, was conducted in the state of Sabah in Malaysian Borneo between April and July of 2008. Among the suite of observations recorded, the campaign included measurements of NOx and O3 – crucial outputs of any model chemistry mechanism. We describe the measurements of these species made from both the ground site and aircraft. We then use the output from two resolutions of the chemistry transport model p-TOMCAT to illustrate the ability of a global model chemical mechanism to capture the chemistry at the rainforest site. The basic model performance is good for NOx and poor for ozone. A box model containing the same chemical mechanism is used to explore the results of the global model in more depth and make comparisons between the two. Without some parameterization of the nighttime boundary layer – free troposphere mixing (i.e. the use of a dilution parameter), the box model does not reproduce the observations, pointing to the importance of adequately representing physical processes for comparisons with surface measurements. We conclude with a discussion of box model budget calculations of chemical reaction fluxes, deposition and mixing, and compare these results to output from p-TOMCAT. These show the same chemical mechanism behaves similarly in both models, but that emissions and advection play particularly strong roles in influencing the comparison to surface measurements.