893 resultados para Percentage of Fat Mass
Resumo:
ABSTRACT: BACKGROUND: Although smokers tend to have a lower body-mass index than non-smokers, smoking may favour abdominal body fat accumulation. To our knowledge, no population-based studies have assessed the relationship between smoking and body fat composition. We assessed the association between cigarette smoking and waist circumference, body fat, and body-mass index. METHODS: Height, weight, and waist circumference were measured among 6,123 Caucasians (ages 35-75) from a cross-sectional population-based study in Switzerland. Abdominal obesity was defined as waist circumference>=102 cm for men and >=88 cm for women. Body fat (percent total body weight) was measured by electrical bioimpedance. Age- and sex-specific body fat cut-offs were used to define excess body fat. Cigarettes smoked per day were assessed by self-administered questionnaire. Age-adjusted means and odds ratios were calculated using linear and logistic regression. RESULTS: Current smokers (29% of men and 24% of women) had lower mean waist circumference, body fat percentage, and body-mass index compared with non-smokers. Age-adjusted mean waist circumference and body fat increased with cigarettes smoked per day among smokers. The association between cigarettes smoked per day and body-mass index was non-significant. Compared with light smokers, the adjusted odds ratio (OR) for abdominal obesity in men was 1.28 (0.78-2.10) for moderate smokers and 1.94 (1.15-3.27) for heavy smokers (P=0.03 for trend), and 1.07 (0.72-1.58) and 2.15 (1.26-3.64) in female moderate and heavy smokers, respectively (P<0.01 for trend). Compared with light smokers, the OR for excess body fat in men was 1.05 (95% CI: 0.58-1.92) for moderate smokers and 1.15 (0.60-2.20) for heavy smokers (P=0.75 for trend) and 1.34 (0.89-2.00) and 2.11 (1.25-3.57), respectively in women (P=0.07 for trend). CONCLUSION: Among smokers, cigarettes smoked per day were positively associated with central fat accumulation, particularly in women.
Resumo:
In a retrospective study, we examined several determinants of basal fat oxidation in 720 healthy Caucasian volunteers. Adult men (n = 427) and women (n = 293) were characterized for resting energy expenditure and substrate oxidation by indirect calorimetry (after a 12-h overnight fast), peak O2 consumption by a treadmill test to exhaustion, body composition by hydrodensitometry, food intake from a 3-day food diary, and hormonal status by fasting hormone concentrations. Fat oxidation was negatively correlated with fat mass in men (r = -0.11; P < 0.05), but no statistical relationship was found in women. In a stepwise multiple regression analysis, fat oxidation was best predicted by peak O2 consumption and fat-free mass in men (model R2 = 0.142) and by free thyroxine, fat-free mass, and fasting insulin in women (model R2 = 0.153). Relative rates of fat oxidation (fat oxidation adjusted for differences in resting energy expenditure) were not correlated with fat mass in either gender. Women showed a lower rate of basal fat oxidation (both absolute and adjusted) than did men. Our results show that fat oxidation is not greater in individuals with a greater fat mass. Furthermore, our results support a sexual dimorphism in basal rates of fat oxidation.
Resumo:
An association between anorexia nerviosa (AN) and low bone mass has been demonstrated. Bone loss associated with AN involves hormonal and nutritional impairments, though their exact contribution is not clearly established. We compared bone mass in AN patients with women of similar weight with no criteria for AN, and a third group of healthy, normal-weight, age-matched women. The study included forty-eight patients with AN, twenty-two healthy eumenorrhoeic women with low weight (LW group; BMI < 18.5 kg/m2) and twenty healthy women with BMI >18.5 kg/m2 (control group), all of similar age. We measured lean body mass, percentage fat mass, total bone mineral content (BMC) and bone mineral density in lumbar spine (BMD LS) and in total (tBMD). We measured anthropometric parameters, leptin and growth hormone. The control group had greater tBMD and BMD LS than the other groups, with no differences between the AN and LW groups. No differences were found in tBMD, BMD LS and total BMC between the restrictive (n 25) and binge-purge type (n 23) in AN patients. In AN, minimum weight (P = 0.002) and percentage fat mass (P = 0.02) explained BMD LS variation (r2 0.48) and minimum weight (r2 0.42; P = 0.002) for tBMD in stepwise regression analyses. In the LW group, BMI explained BMD LS (r2 0.72; P = 0.01) and tBMD (r2 0.57; P = 0.04). We concluded that patients with AN had similar BMD to healthy thin women. Anthropometric parameters could contribute more significantly than oestrogen deficiency in the achievement of peak bone mass in AN patients.
Resumo:
BACKGROUND The effect of the macronutrient composition of the usual diet on long term weight maintenance remains controversial. METHODS 373,803 subjects aged 25-70 years were recruited in 10 European countries (1992-2000) in the PANACEA project of the EPIC cohort. Diet was assessed at baseline using country-specific validated questionnaires and weight and height were measured at baseline and self-reported at follow-up in most centers. The association between weight change after 5 years of follow-up and the iso-energetic replacement of 5% of energy from one macronutrient by 5% of energy from another macronutrient was assessed using multivariate linear mixed-models. The risk of becoming overweight or obese after 5 years was investigated using multivariate Poisson regressions stratified according to initial Body Mass Index. RESULTS A higher proportion of energy from fat at the expense of carbohydrates was not significantly associated with weight change after 5 years. However, a higher proportion of energy from protein at the expense of fat was positively associated with weight gain. A higher proportion of energy from protein at the expense of carbohydrates was also positively associated with weight gain, especially when carbohydrates were rich in fibre. The association between percentage of energy from protein and weight change was slightly stronger in overweight participants, former smokers, participants ≥60 years old, participants underreporting their energy intake and participants with a prudent dietary pattern. Compared to diets with no more than 14% of energy from protein, diets with more than 22% of energy from protein were associated with a 23-24% higher risk of becoming overweight or obese in normal weight and overweight subjects at baseline. CONCLUSION Our results show that participants consuming an amount of protein above the protein intake recommended by the American Diabetes Association may experience a higher risk of becoming overweight or obese during adult life.
Resumo:
Resting metabolic rate (RMR) and the thermic effect of a meal (TEM) were measured in a group of 26 prepubertal children divided into three groups: (1) children with both parents obese (n = 8, group OB2); (2) children with no obese parents and without familial history of obesity (n = 8, OB0); and (3) normal body weight children (n = 10, C). Average RMR was similar in OB2 and OB0 children (4785 +/- 274 kJ/day vs 5091 +/- 543 kJ/day), but higher (P < 0.05) than in controls (4519 +/- 322 kJ/day). Adjusted for fat-free mass (FFM) mean RMRs were comparable in the three groups of children (4891 +/- 451 kJ/day vs 5031 +/- 451 kJ/day vs 4686 +/- 451 kJ/day in OB2, OB0, and C, respectively). The thermic response to the mixed meal was similar in OB2, OB0 and C groups. The TEM calculated as the percentage of RMR was lower (P < 0.05) in obese than in control children: 10.2% +/- 3.1% vs 10.9% +/- 4.3% vs 14.0% +/- 4.3% in OB2, OB0, and C, respectively. The similar RMR as absolute value as well as adjusted for FFM, and the comparable thermic effect of food in the obese children with or without familial history of obesity, failed to support the view that family history of obesity can greatly influence the RMR and the TEM of the obese child with obese parents.
Resumo:
The restoration of body composition (BC) parameters is considered to be one of the most important goals in the treatment of patients with anorexia nervosa (AN). However, little is known about differences between AN diagnostic subtypes [restricting (AN-R) and binge/purging (AN-BP)] and weekly changes in BC during refeeding treatment. Therefore, the main objectives of our study were twofold: 1) to assess the changes in BC throughout nutritional treatment in an AN sample and 2) to analyze predictors of BC changes during treatment, as well as predictors of treatment outcome. The whole sample comprised 261 participants [118 adult females with AN (70 AN-R vs. 48 AN-BP), and 143 healthy controls]. BC was measured weekly during 15 weeks of day-hospital treatment using bioelectrical impedance analysis (BIA). Assessment measures also included the Eating Disorders Inventory-2, as well as a number of other clinical indices. Overall, the results showed that AN-R and AN-BP patients statistically differed in all BC measures at admission. However, no significant time×group interaction was found for almost all BC parameters. Significant time×group interactions were only found for basal metabolic rate (p = .041) and body mass index (BMI) (p = .035). Multiple regression models showed that the best predictors of pre-post changes in BC parameters (namely fat-free mass, muscular mass, total body water and BMI) were the baseline values of BC parameters. Stepwise predictive logistic regressions showed that only BMI and age were significantly associated with outcome, but not with the percentage of body fat. In conclusion, these data suggest that although AN patients tended to restore all BC parameters during nutritional treatment, only AN-BP patients obtained the same fat mass values as healthy controls. Put succinctly, the best predictors of changes in BC were baseline BC values, which did not, however, seem to influence treatment outcome.
Resumo:
The endocannabinoid (eCB) system can promote food intake by increasing odor detection in mice. The eCB system is over-active in human obesity. Our aim is to measure circulating eCB concentrations and olfactory capacity in a human sample that includes people with obesity and explore the possible interaction between olfaction, obesity and the eCB system. The study sample was made up of 161 females with five groups of body mass index sub-categories ranging from under-weight to morbidly obese. We assessed olfactory capacity with the "Sniffin´Sticks" test, which measures olfactory threshold-discrimination-identification (TDI) capacity. We measured plasma concentrations of the eCBs 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine or anandamide (AEA), and several eCB-related compounds, 2-acylglycerols and N-acylethanolamines. 2-AG and other 2-acylglycerols fasting plasma circulating plasma concentrations were higher in obese and morbidly obese subjects. AEA and other N-acylethanolamine circulating concentrations were lower in under-weight subjects. Olfactory TDI scores were lower in obese and morbidly obese subjects. Lower TDI scores were independently associated with higher 2-AG fasting plasma circulating concentrations, higher %body fat, and higher body mass index, after controlling for age, smoking, menstruation, and use of contraceptives. Our results show that obese subjects have a lower olfactory capacity than non-obese ones and that elevated fasting plasma circulating 2-AG concentrations in obesity are linked to a lower olfactory capacity. In agreement with previous studies we show that eCBs AEA and 2-AG, and their respective congeners have a distinct profile in relation to body mass index. The present report is the first study in humans in which olfactory capacity and circulating eCB concentrations have been measured in the same subjects.
Resumo:
Introduction An impaired ability to oxidize fat may be a factor in the obesity's aetiology (3). Moreover, the exercise intensity (Fatmax) eliciting the maximal fat oxidation rate (MFO) was lower in obese (O) compared with lean (L) individuals (4). However, difference in fat oxidation rate (FOR) during exercise between O and L remains equivocal and little is known about FORs during high intensities (>60% ) in O compared with L. This study aimed to characterize fat oxidation kinetics over a large range of intensities in L and O. Methods 12 healthy L [body mass index (BMI): 22.8±0.4] and 16 healthy O men (BMI: 38.9±1.4) performed submaximal incremental test (Incr) to determine whole-body fat oxidation kinetics using indirect calorimetry. After a 15-min resting period (Rest) and 10-min warm-up at 20% of maximal power output (MPO, determined by a maximal incremental test), the power output was increased by 7.5% MPO every 6-min until respiratory exchange ratio reached 1.0. Venous lactate and glucose and plasma concentration of epinephrine (E), norepinephrine (NE), insulin and non-esterified fatty acid (NEFA) were assessed at each step. A mathematical model (SIN) (1), including three variables (dilatation, symmetry, translation), was used to characterize fat oxidation (normalized by fat-free mass) kinetics and to determine Fatmax and MFO. Results FOR at Rest and MFO were not significantly different between groups (p≥0.1). FORs were similar from 20-60% (p≥0.1) and significantly lower from 65-85% in O than in L (p≤0.04). Fatmax was significantly lower in O than in L (46.5±2.5 vs 56.7±1.9 % respectively; p=0.005). Fat oxidation kinetics was characterized by similar translation (p=0.2), significantly lower dilatation (p=0.001) and tended to a left-shift symmetry in O compared with L (p=0.09). Plasma E, insulin and NEFA were significantly higher in L compared to O (p≤0.04). There were no significant differences in glucose, lactate and plasma NE between groups (p≥0.2). Conclusion The study showed that O presented a lower Fatmax and a lower reliance on fat oxidation at high, but not at moderate, intensities. This may be linked to a: i) higher levels of insulin and lower E concentrations in O, which may induce blunted lipolysis; ii) higher percentage of type II and a lower percentage of type I fibres (5), and iii) decreased mitochondrial content (2), which may reduce FORs at high intensities and Fatmax. These findings may have implications for an appropriate exercise intensity prescription for optimize fat oxidation in O. References 1. Cheneviere et al. Med Sci Sports Exerc. 2009 2. Holloway et al. Am J Clin Nutr. 2009 3. Kelley et al. Am J Physiol. 1999 4. Perez-Martin et al. Diabetes Metab. 2001 5. Tanner et al. Am J Physiol Endocrinol Metab. 2002
Resumo:
Diet composition, in particular fat intake, has been suggested to be a risk factor for obesity in humans. Several mechanisms may contribute to explain the impact of fat intake on fat gain. One factor may be the low thermogenesis induced by a mixed meal rich in fat. In a group of 11 girls (10.1 +/- 0.3 yr), 6 obese (body mass index, 25.6 +/- 0.6 kg/m(2)), and 5 nonobese (body mass index, 19 +/- 1.6 kg/m(2)), we tested the hypothesis that a mixed meal rich in fat can elicit energy saving compared with an isocaloric and isoproteic meal rich in carbohydrate. The postabsorptive resting energy expenditure and the thermic effect of a meal (TEM) after a low fat (LF; 20% fat, 68% carbohydrate, and 12% protein) or an isocaloric (2500 kJ or 600 Cal) and isoproteic high fat (HF; 48% fat, 40% carbohydrate, and 12% protein) meal were measured by indirect calorimetry. Each girl repeated the test with a different, randomly assigned menu (HF or LF) 1 week after the first test. TEM, expressed as a percentage of energy intake was significantly higher after a LF meal than after a HF meal (6.5 +/- 0.7% vs. 4.3 +/- 0.4%; P < 0.01). The postprandial respiratory quotient (RQ) was significantly higher after a LF meal than after a HF meal (0.86 +/- 0.013 vs. 0.83 +/- 0.014; P < 0.001). The HF low carbohydrate meal induced a significantly lower increase in carbohydrate oxidation than the LF meal (20.3 +/- 6.2 vs. 61.3 +/- 7.8 mg/min; P < 0.001). On the contrary, fat oxidation was significantly higher after a HF meal than after a LF meal (-1.3 +/- 2.4 vs. -15.1 +/- 3.6 mg/min; P < 0.01). However, the postprandial fat storage was 8-fold higher after a HF meal than after a LF meal (17.2 +/- 1.7 vs. 1.9 +/- 1.8 g; P < 0.001). These results suggest that a high fat meal is able to induce lower thermogenesis and a higher positive fat balance than an isocaloric and isoproteic low fat meal. Therefore, diet composition per se must be taken into account among the various risk factors that induce obesity in children.
Resumo:
Introduction An impaired ability to oxidize fat may be a factor in the obesity's aetiology (3). Moreover, the exercise intensity (Fatmax) eliciting the maximal fat oxidation rate (MFO) was lower in obese (O) compared with lean (L) individuals (4). However, difference in fat oxidation rate (FOR) during exercise between O and L remains equivocal and little is known about FORs during high intensities (>60% ) in O compared with L. This study aimed to characterize fat oxidation kinetics over a large range of intensities in L and O. Methods 12 healthy L [body mass index (BMI): 22.8±0.4] and 16 healthy O men (BMI: 38.9±1.4) performed submaximal incremental test (Incr) to determine whole-body fat oxidation kinetics using indirect calorimetry. After a 15-min resting period (Rest) and 10-min warm-up at 20% of maximal power output (MPO, determined by a maximal incremental test), the power output was increased by 7.5% MPO every 6-min until respiratory exchange ratio reached 1.0. Venous lactate and glucose and plasma concentration of epinephrine (E), norepinephrine (NE), insulin and non-esterified fatty acid (NEFA) were assessed at each step. A mathematical model (SIN) (1), including three variables (dilatation, symmetry, translation), was used to characterize fat oxidation (normalized by fat-free mass) kinetics and to determine Fatmax and MFO. Results FOR at Rest and MFO were not significantly different between groups (p≥0.1). FORs were similar from 20-60% (p≥0.1) and significantly lower from 65-85% in O than in L (p≤0.04). Fatmax was significantly lower in O than in L (46.5±2.5 vs 56.7±1.9 % respectively; p=0.005). Fat oxidation kinetics was characterized by similar translation (p=0.2), significantly lower dilatation (p=0.001) and tended to a left-shift symmetry in O compared with L (p=0.09). Plasma E, insulin and NEFA were significantly higher in L compared to O (p≤0.04). There were no significant differences in glucose, lactate and plasma NE between groups (p≥0.2). Conclusion The study showed that O presented a lower Fatmax and a lower reliance on fat oxidation at high, but not at moderate, intensities. This may be linked to a: i) higher levels of insulin and lower E concentrations in O, which may induce blunted lipolysis; ii) higher percentage of type II and a lower percentage of type I fibres (5), and iii) decreased mitochondrial content (2), which may reduce FORs at high intensities and Fatmax. These findings may have implications for an appropriate exercise intensity prescription for optimize fat oxidation in O. References 1. Cheneviere et al. Med Sci Sports Exerc. 2009 2. Holloway et al. Am J Clin Nutr. 2009 3. Kelley et al. Am J Physiol. 1999 4. Perez-Martin et al. Diabetes Metab. 2001 5. Tanner et al. Am J Physiol Endocrinol Metab. 2002
Resumo:
There is evidence that obesity-related disorders are increased among people with depression. Variation in the FTO (fat mass and obesity associated) gene has been shown to contribute to common forms of human obesity. This study aimed to investigate the genetic influence of polymorphisms in FTO in relation to body mass index (BMI) in two independent samples of major depressive disorder (MDD) cases and controls. We analysed 88 polymorphisms in the FTO gene in a clinically ascertained sample of 2442 MDD cases and 809 controls (Radiant Study). In all, 8 of the top 10 single-nucleotide polymorphisms (SNPs) showing the strongest associations with BMI were followed-up in a population-based cohort (PsyCoLaus Study) consisting of 1292 depression cases and 1690 controls. Linear regression analyses of the FTO variants and BMI yielded 10 SNPs significantly associated with increased BMI in the depressive group but not the control group in the Radiant sample. The same pattern was found in the PsyCoLaus sample. We found a significant interaction between genotype and affected status in relation to BMI for seven SNPs in Radiant (P<0.0057), with PsyCoLaus giving supportive evidence for five SNPs (P-values between 0.03 and 0.06), which increased in significance when the data were combined in a meta-analysis. This is the first study investigating FTO and BMI within the context of MDD, and the results indicate that having a history of depression moderates the effect of FTO on BMI. This finding suggests that FTO is involved in the mechanism underlying the association between mood disorders and obesity.
Resumo:
Evidence is accumulating that total body mass and its relative composition influence the rate of fat utilization in man. This effect can be explained by two factors operating in concert: (i) the effect of the size of the tissue mass and (ii) the nature of the fuel mix oxidized, i.e. the proportion of energy derived from fat vs. carbohydrate. In a cross-sectional study of 307 women with increasing degrees of obesity, we observed that the respiratory quotient (RQ) in post-absorptive conditions became progressively lower with increased body fatness, indicating a shift in substrate utilization. However, the RQ is known to be also influenced by the diet commonly ingested by the subjects. A short-term mixed diet overfeeding in lean and obese women has also demonstrated the high sensitivity of RQ to changes in energy balance. Following a one-day overfeeding (2500 kcal/day in excess of the previous 24 h energy expenditure), the magnitude of increase in RQ was identical in lean and obese subjects and the net efficiency of substrate utilization and storage was not influenced by the state of obesity.
Resumo:
Introduction An impaired ability to oxidize fat may be a factor in the obesity's aetiology (3). Moreover, the exercise intensity (Fatmax) eliciting the maximal fat oxidation rate (MFO) was lower in obese (O) compared with lean (L) individuals (4). However, difference in fat oxidation rate (FOR) during exercise between O and L remains equivocal and little is known about FORs during high intensities (>60% ) in O compared with L. This study aimed to characterize fat oxidation kinetics over a large range of intensities in L and O. Methods 12 healthy L [body mass index (BMI): 22.8±0.4] and 16 healthy O men (BMI: 38.9±1.4) performed submaximal incremental test (Incr) to determine whole-body fat oxidation kinetics using indirect calorimetry. After a 15-min resting period (Rest) and 10-min warm-up at 20% of maximal power output (MPO, determined by a maximal incremental test), the power output was increased by 7.5% MPO every 6-min until respiratory exchange ratio reached 1.0. Venous lactate and glucose and plasma concentration of epinephrine (E), norepinephrine (NE), insulin and non-esterified fatty acid (NEFA) were assessed at each step. A mathematical model (SIN) (1), including three variables (dilatation, symmetry, translation), was used to characterize fat oxidation (normalized by fat-free mass) kinetics and to determine Fatmax and MFO. Results FOR at Rest and MFO were not significantly different between groups (p≥0.1). FORs were similar from 20-60% (p≥0.1) and significantly lower from 65-85% in O than in L (p≤0.04). Fatmax was significantly lower in O than in L (46.5±2.5 vs 56.7±1.9 % respectively; p=0.005). Fat oxidation kinetics was characterized by similar translation (p=0.2), significantly lower dilatation (p=0.001) and tended to a left-shift symmetry in O compared with L (p=0.09). Plasma E, insulin and NEFA were significantly higher in L compared to O (p≤0.04). There were no significant differences in glucose, lactate and plasma NE between groups (p≥0.2). Conclusion The study showed that O presented a lower Fatmax and a lower reliance on fat oxidation at high, but not at moderate, intensities. This may be linked to a: i) higher levels of insulin and lower E concentrations in O, which may induce blunted lipolysis; ii) higher percentage of type II and a lower percentage of type I fibres (5), and iii) decreased mitochondrial content (2), which may reduce FORs at high intensities and Fatmax. These findings may have implications for an appropriate exercise intensity prescription for optimize fat oxidation in O. References 1. Cheneviere et al. Med Sci Sports Exerc. 2009 2. Holloway et al. Am J Clin Nutr. 2009 3. Kelley et al. Am J Physiol. 1999 4. Perez-Martin et al. Diabetes Metab. 2001 5. Tanner et al. Am J Physiol Endocrinol Metab. 2002
Resumo:
We performed a cross-sectional study in 450 nonreferred preschool children aged 4 to 6 years to assess the association between hyperactivity/inattention with adiposity and lifestyle characteristics. Measurements included scores of hyperactivity/inattention, adiposity, objectively measured physical activity, television viewing, and eating habits. Higher scores of hyperactivity/inattention were associated with lower percentage body fat, higher levels of physical activity, and less time spent in sedentary activity (all P ≤ .01). However, higher scores of hyperactivity/inattention were also associated with more television viewing and less healthy eating habits (all P ≤ .04). Except for some selected eating habits (P ≥ .07), those relationships remained significant after adjustment for age, sex, and sociodemographic confounders. To conclude, higher scores of hyperactivity/inattention are linked to different lifestyle characteristics that may in part contribute to a future development of overweight/obesity. Precise mechanisms explaining these associations and possible preventive approaches should be further investigated.
Resumo:
Aerobic exercise training performed at the intensity eliciting maximal fat oxidation (Fatmax) has been shown to improve the metabolic profile of obese patients. However, limited information is available on the reproducibility of Fatmax and related physiological measures. The aim of this study was to assess the intra-individual variability of: a) Fatmax measurements determined using three different data analysis approaches and b) fat and carbohydrate oxidation rates at rest and at each stage of an individualized graded test. Fifteen healthy males [body mass index 23.1±0.6 kg/m2, maximal oxygen consumption ([Formula: see text]) 52.0±2.0 ml/kg/min] completed a maximal test and two identical submaximal incremental tests on ergocycle (30-min rest followed by 5-min stages with increments of 7.5% of the maximal power output). Fat and carbohydrate oxidation rates were determined using indirect calorimetry. Fatmax was determined with three approaches: the sine model (SIN), measured values (MV) and 3rd polynomial curve (P3). Intra-individual coefficients of variation (CVs) and limits of agreement were calculated. CV for Fatmax determined with SIN was 16.4% and tended to be lower than with P3 and MV (18.6% and 20.8%, respectively). Limits of agreement for Fatmax were -2±27% of [Formula: see text] with SIN, -4±32 with P3 and -4±28 with MV. CVs of oxygen uptake, carbon dioxide production and respiratory exchange rate were <10% at rest and <5% during exercise. Conversely, CVs of fat oxidation rates (20% at rest and 24-49% during exercise) and carbohydrate oxidation rates (33.5% at rest, 8.5-12.9% during exercise) were higher. The intra-individual variability of Fatmax and fat oxidation rates was high (CV>15%), regardless of the data analysis approach employed. Further research on the determinants of the variability of Fatmax and fat oxidation rates is required.